• Neuroscience · Feb 2020

    Hyper-formation of GABA and glycine co-releasing terminals in the mouse cerebellar nuclei after deprivation of GABAergic inputs from Purkinje cells.

    • Shiori Kobayashi, Jeongtae Kim, Yuchio Yanagawa, Noboru Suzuki, Hiromitsu Saito, and Chitoshi Takayama.
    • Department of Molecular Anatomy, School of Medicine, University of the Ryukyus, Uehara 207, Nishihara, Okinawa 9030215, Japan.
    • Neuroscience. 2020 Feb 1; 426: 88-100.

    AbstractGABA and glycine are inhibitory neurotransmitters. However, the mechanisms underlying the formation of GABAergic and glycinergic synapses remain unclear. The influence of GABAergic input deprivation on inhibitory terminal formation was investigated using Purkinje cell (PC)-specific vesicular GABA transporter (VGAT) knockout (L7-VGAT) mice, in which GABA release from PCs diminishes in an age-dependent manner. We compared the late development of GABAergic and glycinergic terminals in the cerebellar nucleus (CN) between control and L7-VGAT mice. In the control CN, the density of glutamate decarboxylase (GAD)-positive dots remained unchanged between postnatal 2 months (P2M) and 13 months (P13M), whereas glycine transporter 2 (GlyT2)-positive dots increased in density during this time frame. No difference in the density of GlyT2-positive dots was observed between control and L7-VGAT mice at P2M, but the density was significantly higher in the L7-VGAT fastigial nuclei (FN) than the control FN at P13M. When VGAT was absent from PC terminals, GlyT2-positive dots included GAD and VGAT and formed synapses. These results indicated that GABAergic terminals were formed by P2M, glycinergic terminals were actively formed after P2M, and more glycinergic terminals were formed in the L7-VGAT FN than in the control FN, suggesting that the increased glycinergic terminals may derive from interneurons within the FN and may also release GABA. These results suggest that the deprivation of GABAergic inputs from PCs may accelerate the formation of co-releasing terminals derived from interneurons and that the inhibitory terminal numbers and types may be regulated by the quantity of functional GABAergic inputs.Copyright © 2019 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.