• Neuroscience · Jan 2020

    Aquaporin-4 dysregulation in a controlled cortical impact injury model of posttraumatic epilepsy.

    • Jenny I Szu, Som Chaturvedi, Dillon D Patel, and Devin K Binder.
    • Center for Glial-Neuronal Interactions, Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA, USA.
    • Neuroscience. 2020 Jan 21; 428: 140-153.

    AbstractPosttraumatic epilepsy (PTE) is a long-term negative consequence of traumatic brain injury (TBI) in which recurrent spontaneous seizures occur after the initial head injury. PTE develops over an undefined period during which circuitry reorganization in the brain causes permanent hyperexcitability. The pathophysiology by which trauma leads to spontaneous seizures is unknown and clinically relevant models of PTE are key to understanding the molecular and cellular mechanisms underlying the development of PTE. In the present study, we used the controlled-cortical impact (CCI) injury model of TBI to induce PTE in mice and to characterize changes in aquaporin-4 (AQP4) expression. A moderate-severe TBI was induced in the right frontal cortex and video-electroencephalographic (vEEG) recordings were performed in the ipsilateral hippocampus to monitor for spontaneous seizures at 14, 30, 60, and 90 days post injury (dpi). The percentage of mice that developed PTE were 13%, 20%, 27%, and 14% at 14, 30, 60, and 90 dpi, respectively. We found a significant increase in AQP4 in the ipsilateral frontal cortex and hippocampus of mice that developed PTE compared to those that did not develop PTE. Interestingly, AQP4 was found to be mislocalized away from the perivascular endfeet and towards the neuropil in mice that developed PTE. Here, we report for the first time, AQP4 dysregulation in a model of PTE which may carry significant implications for epileptogenesis after TBI.Copyright © 2019 The Author(s). Published by Elsevier Ltd.. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.