• Anesthesiology · May 2020

    A Central Amygdala-Ventrolateral Periaqueductal Gray Matter Pathway for Pain in a Mouse Model of Depression-like Behavior.

    • Weiwei Yin, Lisheng Mei, Tingting Sun, Yuping Wang, Jie Li, Changmao Chen, Zahra Farzinpour, Yu Mao, Wenjuan Tao, Juan Li, Wen Xie, and Zhi Zhang.
    • From the Hefei National Laboratory for Physical Sciences at the Microscale, Key Laboratory of Brain Function and Disease of Chinese Academy of Science, Department of Biophysics and Neurobiology, University of Science and Technology of China, Hefei, China (W.Y., L.M., T.S., Y.W., Jie Li, C.C., Z.F., Y.M., W.T., Juan Li, Z.Z.) the Department of Psychology, Anhui Mental Health Center, Hefei, China (W.X., Z.Z.) the Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, China (Y.M., W.T.).
    • Anesthesiology. 2020 May 1; 132 (5): 1175-1196.

    BackgroundThe mechanisms underlying depression-associated pain remain poorly understood. Using a mouse model of depression, the authors hypothesized that the central amygdala-periaqueductal gray circuitry is involved in pathologic nociception associated with depressive states.MethodsThe authors used chronic restraint stress to create a mouse model of nociception with depressive-like behaviors. They then used retrograde tracing strategies to dissect the pathway from the central nucleus of the amygdala to the ventrolateral periaqueductal gray. The authors performed optogenetic and chemogenetic experiments to manipulate the activity of this pathway to explore its roles for nociception.ResultsThe authors found that γ-aminobutyric acid-mediated (GABAergic) neurons from the central amygdala project onto GABAergic neurons of the ventrolateral periaqueductal gray, which, in turn, locally innervate their adjacent glutamatergic neurons. After chronic restraint stress, male mice displayed reliable nociception (control, mean ± SD: 0.34 ± 0.11 g, n = 7 mice; chronic restraint stress, 0.18 ± 0.11 g, n = 9 mice, P = 0.011). Comparable nociception phenotypes were observed in female mice. After chronic restraint stress, increased circuit activity was generated by disinhibition of glutamatergic neurons of the ventrolateral periaqueductal gray by local GABAergic interneurons via receiving enhanced central amygdala GABAergic inputs. Inhibition of this circuit increased nociception in chronic restraint stress mice (median [25th, 75th percentiles]: 0.16 [0.16, 0.16] g to 0.07 [0.04, 0.16] g, n = 7 mice per group, P < 0.001). In contrast, activation of this pathway reduced nociception (mean ± SD: 0.16 ± 0.08 g to 0.34 ± 0.13 g, n = 7 mice per group, P < 0.001).ConclusionsThese findings indicate that the central amygdala-ventrolateral periaqueductal gray pathway may mediate some aspects of pain symptoms under depression conditions.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.