• Neuroscience · Apr 2020

    Meditation Increases the Entropy of Brain Oscillatory Activity.

    • Martínez Vivot Rocío R National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Física, FCEyN, UBA, e Instituto de Física de, Carla Pallavicini, Federico Zamberlan, Daniel Vigo, and Enzo Tagliazucchi.
    • National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina; Departamento de Física, FCEyN, UBA, e Instituto de Física de Buenos Aires (IFIBA), Buenos Aires, Argentina; Instituto de Investigaciones Biomédicas UCA-CONICET (BIOMED), Buenos Aires, Argentina.
    • Neuroscience. 2020 Apr 1; 431: 40-51.

    AbstractWe address the hypothesis that the entropy of neural dynamics indexes the intensity and quality of conscious content. Previous work established that serotonergic psychedelics can have a dysregulating effect on brain activity, leading to subjective effects that present a considerable overlap with the phenomenology of certain meditative states. Here we propose that the prolonged practice of meditation results in endogenous increased entropy of brain oscillatory activity. We estimated the entropy of band-specific oscillations during the meditative state of traditions classified as 'focused attention' (Himalayan Yoga), 'open monitoring' (Vipassana), and 'open awareness' (Isha Shoonya Yoga). Among all traditions, Vipassana resulted in the highest entropy increases, predominantly in the alpha and low/high gamma bands. In agreement with previous studies, all meditation traditions increased the global coherence in the gamma band, but also stabilized gamma-range dynamics by lowering the metastability. Finally, machine learning classifiers could successfully generalize between certain pairs of meditation traditions based on the scalp distribution of gamma band entropies. Our results extend previous findings on the spectral changes observed during meditation, showing how long-term practice can lead to the capacity for achieving brain states of high entropy. This constitutes an example of an endogenous, self-induced high entropy state.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.