• Neuroscience · May 2020

    Inherent Motor Impulsivity Associates with Specific Gene Targets in the Rat Medial Prefrontal Cortex.

    • Dennis J Sholler, Christina R Merritt, Brionna D Davis-Reyes, George Golovko, Noelle C Anastasio, and Kathryn A Cunningham.
    • Center for Addiction Research, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA; Department of Pharmacology and Toxicology, University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
    • Neuroscience. 2020 May 21; 435: 161-173.

    AbstractHigh impulsivity characterizes a myriad of neuropsychiatric diseases, and identifying targets for neuropharmacological intervention to reduce impulsivity could reveal transdiagnostic treatment strategies. Motor impulsivity (impulsive action) reflects in part the failure of "top-down" executive control by the medial prefrontal cortex (mPFC). The present study profiled the complete set of mRNA molecules expressed from genes (transcriptome) in the mPFC of male, outbred rats stably expressing high (HI) or low (LI) motor impulsivity based upon premature responses in the 1-choice serial reaction time (1-CSRT) task. RNA-sequencing identified expression of 18 genes that was higher in the mPFC of HI vs. LI rats. Functional gene enrichment revealed that biological processes related to calcium homeostasis and G protein-coupled receptor (GPCR) signaling pathways, particularly glutamatergic, were overrepresented in the mPFC of HI vs. LI rats. Transcription factor enrichment identified mothers against decapentaplegic homolog 4 (SMAD4) and RE1 silencing transcription factor (REST) as overrepresented in the mPFC of HI rats relative to LI rats, while in silico analysis predicted a conserved SMAD binding site within the voltage-gated calcium channel subunit alpha1 E (CACNA1E) promoter region. qRT-PCR analyses confirmed that mRNA expression of CACNA1E, as well as expression of leucyl and cystinyl aminopeptidase (LNPEP), were higher in the mPFC of HI vs. LI rats. These outcomes establish a transcriptomic landscape in the mPFC that is related to individual differences in motor impulsivity and propose novel gene targets for future impulsivity research.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.