• Neuroscience · Nov 2010

    Specific disruption of astrocytic Ca2+ signaling pathway in vivo by adeno-associated viral transduction.

    • Y Xie, T Wang, G Y Sun, and S Ding.
    • Dalton Cardiovascular Research Center, University of Missouri-Columbia, MO 65211, USA.
    • Neuroscience. 2010 Nov 10; 170 (4): 992-1003.

    AbstractAstrocytes are the predominant glial-cell type in the CNS and they are known to play an active role in modulating neuronal function. Since many of the same molecules including G-protein coupled receptors (GPCRs) are expressed in both neurons and astrocytes, in vivo pharmacological manipulations to target astrocytes lack specificity. In this study, we investigated the effect of Pleckstrin Homology (PH) domain of Phospholipase C (PLC)-like protein p130 (p130PH) on Ca(2+) signaling in astrocytes in vivo. We used the serotype 2/5 recombinant adeno-associated virus (rAAV2/5) vectors to introduce p130PH fused with a tagged protein monomer red fluorescent protein at the N-terminal (i.e., transgene mRFP-p130PH). In order to selectively disrupt the Ca(2+) signaling pathway in astrocytes, the transgene was driven by a novel astrocyte-specific promoter gfaABC(1)D. Our results show that mRFP-p130PH is exclusively expressed in astrocytes with a high efficiency and a stable expression level. In vivo imaging using two-photon microscopy demonstrated reduced Ca(2+) signal in transduced astrocytes in response to ATP stimulation. As Ca(2+) signaling is a characteristic form of cellular excitability in astrocytes that can mediate chemical transmitter release and contribute to neuronal excitotoxicity, the current study provides an in vivo approach to better understand Ca(2+)-dependent gliotransmission and its involvement in glia-related diseases.Copyright © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.