• Neuroscience · Jul 2020

    Structural plasticity and molecular markers in hippocampus of male rats after acute stress.

    • Fenghua Chen, Benedetta Polsinelli, Nicoletta Nava, Giulia Treccani, Betina Elfving, Heidi K Müller, Laura Musazzi, Maurizio Popoli, Jens R Nyengaard, and Gregers Wegener.
    • Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Denmark; Core Center for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Aarhus University, Denmark. Electronic address: fenghua.chen@clin.au.dk.
    • Neuroscience. 2020 Jul 1; 438: 100-115.

    AbstractStress plays a crucial role in the pathogenesis of psychiatric disorders and affects neuronal plasticity in different brain regions. We have previously found that acute foot-shock (FS) stress elicits fast and long-lasting functional and morphological remodeling of excitatory neurons in the prefrontal cortex (PFC), which were partly prevented by the pretreatment with antidepressants. Here we investigated, whether acute stress and pretreatment with desipramine (DMI) interfere in hippocampal dendritic remodeling. Male Sprague-Dawley rats were subjected to acute FS-stress, followed by measurement of time-dependent (1, 7 and 14 days) structural plasticity (dendritic arborization, spine number and morphology) in hippocampal CA1 pyramidal neurons and expression patterns of molecular markers implicated in neuronal plasticity. We found that acute stress significantly decreased spine number, dendritic length, and altered spine morphometric parameters at all time points evaluated after stress. This was paralleled by changes in the gene expression of Spinophilin and Cdc42, and protein expression of homer1. Pretreatment with DMI prevented the stress-induced dendritic atrophy and spine loss 14 days after acute FS. However, DMI treatment without stress differentially affected the expression patterns of spine-related genes and proteins. In conclusion, acute FS-stress and pretreatment with DMI significantly changed dendritic morphology, including number and morphology of spines, and the length of dendrites in hippocampal CA1 pyramidal cells as early as 1 day, and sustained up to 14 days after acute FS. The findings were paralleled by changes in gene and protein expression of actin binding and cytoskeletal proteins, Rho GTPases, and postsynaptic scaffolding proteins.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.