• Neuroscience · Jul 2020

    GABRG2 Deletion Linked to Genetic Epilepsy with Febrile Seizures Plus Affects the Expression of GABAA Receptor Subunits and Other Genes at Different Temperatures.

    • Xinxiao Li, Shengnan Guo, Kunmei Liu, Chun Zhang, Haigang Chang, Weilong Yang, Shikuo Rong, Qikuan Hu, Jianqi Cui, Feng Wang, and Tao Sun.
    • Ningxia Key Laboratory of Cerebrocranial Disease, The Incubation Base of National Key Laboratory, Ningxia Medical University, Yinchuan, Ningxia 750001, PR China; Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan, Ningxia 750001, PR China.
    • Neuroscience. 2020 Jul 1; 438: 116-136.

    AbstractMutations in γ-aminobutyric acid A receptor (GABAA) subunits and sodium channel genes, especially GABRG2 and SCN1A, have been reported to be associated with febrile seizures (FS) and genetic epilepsy with febrile seizures plus (GEFS+). GEFS+ is a well-known family of epileptic syndrome with autosomal dominant inheritance in children. Its most common phenotypes are febrile seizures often with accessory afebrile generalized tonic-clonic seizures, febrile seizures plus (FS+), severe epileptic encephalopathy, as well as other types of generalized or localization-related seizures. However, the pathogenesis of febrile seizures remains largely unknown. Here, we generated a GABRG2 gene knockout cell line (HT22GABRG2KO) by applying the CRISPR/Cas9-mediated genomic deletion in HT-22 mouse hippocampal neuronal cell line to explore the function of GABRG2 in vitro. With mRNA-seq, we found significant changes in the expression profiles of several epilepsy-related genes when GABRG2 was knockout, some of them showing temperature-induced changes as well. Kyoto Encyclopedia Gene and Genomic (KEGG) analysis revealed a significant alteration in the MAPK and PI3K-Akt signaling pathways. We also observed an up-regulation of the matrix metalloproteinases (MMPs) family after GABRG2 knockout. Furthermore, the significant decrease in expression of GABRA1 and CACNA1A (but not others) with an increase in temperature is a novel finding. In summary, mutations in the GABAA receptor can lead to a decrease in numbers of receptors, which may cause the impairment of GABAergic pathway signaling. This data has been the first time to reveal that GABRG2 mutations would affect the function of other genes, and based on this finding we hope this work would also provide a new direction for the research of GABRG2 in GEFS+. It also may provide a molecular basis for the severity of epilepsy, and guide the clinical medication for the treatment of the epilepsy focused on the function on GABAA receptors, which, might be a new strategy for genetic diagnosis and targeted treatment of epilepsy.Copyright © 2020 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…