Journal of neural engineering
-
Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits. We previously reported no adverse effects of Pt corrosion products in the cochleae of guinea pigs following 4 weeks of electrical stimulation using charge densities far greater than the published safe limits for cochlear implants. The present study examines the histopathological effects of Pt within the cochlea following continuous stimulation at a charge density well above the defined safe limits for periods up to 6 months. ⋯ Long-term electrical stimulation of Pt electrodes at a charge density well above existing safety limits and nearly an order of magnitude higher than levels used clinically, does not adversely affect the auditory neuron population or reduce neural function, despite a stimulus-induced tissue response and the accumulation of Pt corrosion product. The mechanism resulting in Pt within the unstimulated cochlea is unclear, while the level of Pt observed systemically following stimulation at these very high charge densities does not appear to be of clinical significance.
-
Although Spinal Cord Stimulation (SCS) is an established therapy for treating neuropathic chronic pain, in tonic stimulation, postural changes, electrode migration or badly-positioned electrodes can produce annoying stimulation (intercostal neuralgia) in about 35% of the patients. SCS models are used to study the effect of electrical stimulation to better manage the stimulation parameters and electrode position. The goal of this work was to develop a realistic 3D patient-specific spinal cord model from a real patient and develop a future clinical application that would help physicians to optimize paresthesia coverage in SCS therapy. ⋯ This is the first study to relate the activation area model prediction in dorsal columns with the clinical effect on paresthesia coverage. The outcomes show that 3D patient-specific models would help physicians to choose the best stimulation parameters to optimize neural activation and SCS therapy in tonic stimulation.
-
In an increasingly data-driven world, artificial intelligence is expected to be a key tool for converting big data into tangible benefits and the healthcare domain is no exception to this. Machine learning aims to identify complex patterns in multi-dimensional data and use these uncovered patterns to classify new unseen cases or make data-driven predictions. ⋯ We aim to take some of the mystery out of machine learning and depict how machine learning models can be useful for medical applications. Finally, this tutorial provides a few practical suggestions for how to properly design a machine learning model for a generic medical problem.
-
Cochleae of long-term cochlear implant users have shown evidence of particulate platinum (Pt) corroded from the surface of Pt electrodes. The pathophysiological effect of Pt within the cochlea has not been extensively investigated. We previously evaluated the effects of Pt corrosion at high charge densities and reported negligible pathophysiological impact. The present study extends this work by examining techniques that may reduce Pt corrosion. ⋯ Significant increases in tissue response and Pt corrosion were observed following stimulation at high charge densities. Charge recovery using CC, and to a lesser extent AP, reduced the amount of Pt corrosion but not the tissue response. Stimulation at change densities an order of magnitude higher than those used when programming cochlear implant recipients in the clinic, produced a vigorous tissue response and corrosion products without evidence of neural loss.
-
To evaluate the electrochemical properties, biological response, and surface characterization of an electrodeposited Platinum-Iridium (Pt-Ir) electrode coating on cochlear implants subjected to chronic stimulation in vivo. ⋯ Electrodeposited Pt-Ir electrodes demonstrated significant improvements in electrochemical performance on the bench-top and in vivo compared to uncoated Pt. Neural function and tissue response to Pt-Ir electrodes were not different from uncoated Pt, despite small deposits of Pt-Ir in the tissue capsule. Electrodeposited Pt-Ir coatings offer promise as an improved electrode coating for active neural prostheses.