Journal of neural engineering
-
Established guidelines for safe levels of electrical stimulation for neural prostheses are based on a limited range of the stimulus parameters used clinically. Recent studies have reported particulate platinum (Pt) associated with long-term clinical use of these devices, highlighting the need for more carefully defined safety limits. We previously reported no adverse effects of Pt corrosion products in the cochleae of guinea pigs following 4 weeks of electrical stimulation using charge densities far greater than the published safe limits for cochlear implants. The present study examines the histopathological effects of Pt within the cochlea following continuous stimulation at a charge density well above the defined safe limits for periods up to 6 months. ⋯ Long-term electrical stimulation of Pt electrodes at a charge density well above existing safety limits and nearly an order of magnitude higher than levels used clinically, does not adversely affect the auditory neuron population or reduce neural function, despite a stimulus-induced tissue response and the accumulation of Pt corrosion product. The mechanism resulting in Pt within the unstimulated cochlea is unclear, while the level of Pt observed systemically following stimulation at these very high charge densities does not appear to be of clinical significance.
-
Although Spinal Cord Stimulation (SCS) is an established therapy for treating neuropathic chronic pain, in tonic stimulation, postural changes, electrode migration or badly-positioned electrodes can produce annoying stimulation (intercostal neuralgia) in about 35% of the patients. SCS models are used to study the effect of electrical stimulation to better manage the stimulation parameters and electrode position. The goal of this work was to develop a realistic 3D patient-specific spinal cord model from a real patient and develop a future clinical application that would help physicians to optimize paresthesia coverage in SCS therapy. ⋯ This is the first study to relate the activation area model prediction in dorsal columns with the clinical effect on paresthesia coverage. The outcomes show that 3D patient-specific models would help physicians to choose the best stimulation parameters to optimize neural activation and SCS therapy in tonic stimulation.