Anesthesiology
-
Randomized Controlled Trial Clinical Trial
Hypoxic pulmonary vasoconstriction in nonventilated lung areas contributes to differences in hemodynamic and gas exchange responses to inhalation of nitric oxide.
Enhancement of hypoxic pulmonary vasoconstriction (HPV) in nonventilated lung areas by almitrine increases the respiratory response to inhaled nitric oxide (NO) in patients with acute respiratory distress syndrome (ARDS). Therefore the authors hypothesized that inhibition of HPV in nonventilated lung areas decreases the respiratory effects of NO. ⋯ In patients with ARDS, HPV in nonventilated lung areas modifies the hemodynamic and respiratory response to NO. The stronger the HPV in nonventilated lung areas the more pronounced is the NO-induced decrease in PAP-PAWP. In contrast, the NO-induced decrease in Q(S)/Q(T) is independent of PV(O2) over a wide range of PV(O2) levels. The effect of NO on the arterial oxygen tension varies with the level of PV(O2) by virtue of its location on the oxygen dissociation curve.
-
Randomized Controlled Trial Multicenter Study Comparative Study Clinical Trial
Assessment of low-flow sevoflurane and isoflurane effects on renal function using sensitive markers of tubular toxicity.
Carbon dioxide absorbents degrade sevoflurane, particularly at low gas flow rates, to fluoromethyl-2,2-difluoro-1-(trifluoromethyl)vinyl ether (compound A). Compound A causes renal proximal tubular injury in rats but has had no effect on blood urea nitrogen (BUN) or creatinine concentrations in patients. This investigation compared the effects of low-flow sevoflurane and isoflurane on renal tubular function in surgical patients using conventional (BUN and creatinine) and finer indices of renal injury, specifically those biomarkers sensitive for compound A toxicity in rats (glucosuria, proteinuria, and enzymuria [N-acetyl-beta-D-glucosaminidase (NAG) and alpha-glutathione-S-transferase (alpha GST)]). ⋯ The renal tubular and hepatic effects of low-flow sevoflurane and isoflurane were similar as assessed using both conventional measures of hepatic and renal function and more sensitive biochemical markers of renal tubular cell necrosis. Moderate duration low-flow sevoflurane anesthesia, during which compound A formation occurs, appears to be as safe as low-flow isoflurane anesthesia.
-
Randomized Controlled Trial Clinical Trial
The effect of isoflurane, halothane, sevoflurane, and thiopental/nitrous oxide on respiratory system resistance after tracheal intubation.
After tracheal intubation, lung resistance and therefore respiratory system resistance (R[rs]) routinely increase, sometimes to the point of clinical bronchospasm. Volatile anesthetics generally have been considered to be effective bronchodilators, although there are few human data comparing the efficacy of available agents. This study compared the bronchodilating efficacy of four anesthetic maintenance regimens: 1.1 minimum alveolar concentration (MAC) end-tidal sevoflurane, isoflurane or halothane, and thiopental/nitrous oxide. ⋯ After tracheal intubation in persons without asthma, sevoflurane decreased R(rs) as much or more than isoflurane or halothane did during a 10-min exposure at 1.1 MAC.
-
Randomized Controlled Trial Clinical Trial
Concentration-effect relations for intravenous lidocaine infusions in human volunteers: effects on acute sensory thresholds and capsaicin-evoked hyperpathia.
Preclinical studies have emphasized that persistent small afferent input will induce a state of central facilitation that can be regulated by systemically administered lidocaine. The authors extended these preclinical studies to human volunteers by examining the concentration-dependent effects of intravenous lidocaine on acute sensory thresholds and facilitated processing induced by intradermal capsaicin. ⋯ These studies suggest that the facilitated state induced by persistent small afferent input human pain models may predict the activity of agents that affect components of nociceptive processing that are different from those associated with the pain state evoked by "acute" thermal or mechanical stimuli. Such insight may be valuable in the efficient development of novel analgesics for both neuropathic and post-tissue-injury pain states.
-
Randomized Controlled Trial Clinical Trial
Effects of concentration and volume of 2-chloroprocaine on epidural anesthesia in volunteers.
Effect of local anesthetic concentration and volume on the spread and density of epidural anesthesia is unclear. This study was performed to delineate effects of a threefold difference in concentration and volume of 2-chloroprocaine on epidural anesthesia. ⋯ Intensity of sensory and motor block from epidural anesthesia with 2-chloroprocaine appears to depend primarily on total milligram dose.