Anesthesiology
-
Randomized Controlled Trial Multicenter Study
Effect of patient-controlled perineural analgesia on rehabilitation and pain after ambulatory orthopedic surgery: a multicenter randomized trial.
Efficacy of continuous perineural and patient-controlled ropivacaine infusion at home after orthopedic surgery was compared with patient-controlled intravenous morphine for functional recovery and postoperative analgesia in a multicenter randomized trial. ⋯ After ambulatory orthopedic surgery, 0.2% ropivacaine delivered as a perineural infusion using a disposable elastomeric pump with patient-controlled anesthesia bolus doses optimizes functional recovery and pain relief while decreasing the consumption of rescue analgesics and ropivacaine, and the number of adverse events.
-
Vasopressin, synthesized in the hypothalamus, is released by increased plasma osmolality, decreased arterial pressure, and reductions in cardiac volume. Three subtypes of vasopressin receptors, V1, V2, and V3, have been identified, mediating vasoconstriction, water reabsorption, and central nervous system effects, respectively. Vasopressin and its analogs have been studied intensively for the treatment of states of "relative vasopressin deficiency," such as sepsis, vasodilatory shock, intraoperative hypotension, and cardiopulmonary resuscitation. ⋯ Bolus application of 1 mg terlipressin, the V1 agonist, reverses refractory hypotension in anesthetized patients and has been studied in patients with septic shock and chronic liver failure. During cardiopulmonary resuscitation, a 40-U bolus dose of vasopressin may be considered to replace the first or second bolus of epinephrine regardless of the initial rhythm. The side effects of vasopressin and its analogs must be further characterized.
-
Activation of the cardiac sarcolemmal adenosine triphosphate-sensitive potassium (KATP) channel during metabolic stress initiates cellular events that preserve cardiac performance. Previous studies showed that halogenated anesthetics prime KATP channels under whole cell voltage clamp and act in intracellular pH (pHi)-dependent manner on KATP channels in excised membrane patches. However, it is not known how halogenated anesthetics interact with these channels. ⋯ The nucleotide binding domains of SUR2A play a crucial role in isoflurane facilitation of the KATP channel activity at moderately acidic pHi as would occur during early ischemia. These findings support direct and differential interaction of isoflurane with the subunits of the cardiac sarcolemmal KATP channel.