Anesthesiology
-
The gene unc-1 plays a central role in determining volatile anesthetic sensitivity in Caenorhabditis elegans. Because different unc-1 alleles cause strikingly different phenotypes in different volatile anesthetics, the UNC-1 protein is a candidate to directly interact with volatile anesthetics. UNC-1 is a close homologue of the mammalian protein stomatin, for which a mouse knockout was recently constructed. Because the stomatin gene is expressed in dorsal root ganglion cells, the authors hypothesized that the knockout would have an effect on anesthetic sensitivity in mice similar to that seen in nematodes. ⋯ Nematodes and mice with deletions of the stomatin gene both have increased sensitivity to diethyl ether. Neither nematodes nor mice with stomatin deficiencies have significantly altered sensitivity to isoflurane or halothane. The effects of stomatin deficiency cross phylogenetic boundaries and support the importance of this protein in anesthetic response and the use of C. elegans as a model for anesthetic action in mammals.
-
Nondepolarizing neuromuscular blocking agents (NMBAs) are extensively used in the practice of anesthesia and intensive care medicine. Their primary site of action is at the postsynaptic nicotinic acetylcholine receptor (nAChR) in the neuromuscular junction, but their action on neuronal nAChRs have not been fully evaluated. Furthermore, observed adverse effects of nondepolarizing NMBAs might originate from an interaction with neuronal nAChRs. The aim of this study was to examine the effect of clinically used nondepolarizing NMBAs on muscle and neuronal nAChR subtypes. ⋯ The authors conclude that nondepolarizing NMBAs concentration-dependently inhibit human neuronal nAChRs. The inhibition of the presynaptic alpha3beta2 nAChR subtype expressed at the motor nerve ending provides a possible molecular explanation for the tetanic and train-of-four fade seen during a nondepolarizing neuromuscular block.
-
Remote preconditioning is known to be cardioprotective, but the exact mechanism has not been fully elucidated. The objective of the current study was to investigate the role of kappa-opioid receptors in cardioprotection by remote preconditioning and reveal possible underlying mechanisms. ⋯ Activation of cardiac kappa-opioid receptors is involved in the cardioprotection induced by remote preconditioning, and the mitochondrial permeability transition pore may participate in the postreceptor pathway.
-
The concept of the axillary "sheath" has been a central tenet of brachial plexus regional anesthesia for many years. Recent investigations have cast doubt on its nature and existence. This study further examines the issue. ⋯ The sciatic nerve is not surrounded or enveloped by a "sheath"--it lies in the tissue plane between rigid anatomical structures. Similarly, the brachial plexus lies in the tissue plane between the rigid anatomy of the chest wall, scapula, humerus, and pectoral fascia. This finding is inconsistent with the concept of the axillary sheath.
-
In contrast to hypnosis, there is no surrogate parameter for analgesia in anesthetized patients. Opioids are titrated to suppress blood pressure response to noxious stimulation. The authors evaluated a novel model predictive controller for closed-loop administration of alfentanil using mean arterial blood pressure and predicted plasma alfentanil concentration (Cp Alf) as input parameters. ⋯ The authors' controller has a similar set-point precision as previous hypnotic controllers and provides adequate alfentanil dosing during surgery. It may help to standardize opioid dosing in research and may be a further step toward a multiple input-multiple output controller.