Anesthesiology
-
Randomized Controlled Trial
Response surface modeling of the interaction between propofol and sevoflurane.
Propofol and sevoflurane display additivity for gamma-aminobutyric acid receptor activation, loss of consciousness, and tolerance of skin incision. Information about their interaction regarding electroencephalographic suppression is unavailable. This study examined this interaction as well as the interaction on the probability of tolerance of shake and shout and three noxious stimulations by using a response surface methodology. ⋯ For both electroencephalographic suppression and tolerance to stimulation, the interaction of propofol and sevoflurane was identified as additive. The response surface data can be used for more rational dose finding in case of sequential and coadministration of propofol and sevoflurane.
-
Randomized Controlled Trial
Early phase pharmacokinetics but not pharmacodynamics are influenced by propofol infusion rate.
Conventional compartmental pharmacokinetic models wrongly assume instantaneous drug mixing in the central compartment, resulting in a flawed prediction of drug disposition for the first minutes, and the flaw affects pharmacodynamic modeling. This study examined the influence of the administration rate and other covariates on early phase kinetics and dynamics of propofol by using the enlarged structural pharmacokinetic model. ⋯ This study found that a combined pharmacokinetic-dynamic model consisting of a two-compartmental model with a LAG time and presystemic compartments and a sigmoidal maximum possible drug effect model accurately described the early phase pharmacology of propofol during infusion rate between 10 and 160 mg . kg(-1). h(-1). The infusion rate has an influence on kinetics, but not dynamics. Age was a covariate for LAG time.