Anesthesiology
-
Randomized Controlled Trial
Hemodynamic effects of ephedrine, phenylephrine, and the coadministration of phenylephrine with oxytocin during spinal anesthesia for elective cesarean delivery.
Hemodynamic responses to vasopressors used during spinal anesthesia for elective Cesarean delivery, have not been well described. This study compared the effects of bolus phenylephrine and ephedrine on maternal cardiac output (CO). The hypothesis was that phenylephrine, but not ephedrine, decreases CO when administered in response to hypotension during spinal anesthesia. ⋯ Bolus phenylephrine reduced maternal CO, and decreased CO when compared with ephedrine during elective spinal anesthesia for Cesarean delivery. CO changes correlated with heart rate changes after vasopressor administration, emphasizing the importance of heart rate as a surrogate indicator of CO. Coadministered phenylephrine obtunded hemodynamic responses to oxytocin.
-
Randomized Controlled Trial
Response surface modeling of the interaction between propofol and sevoflurane.
Propofol and sevoflurane display additivity for gamma-aminobutyric acid receptor activation, loss of consciousness, and tolerance of skin incision. Information about their interaction regarding electroencephalographic suppression is unavailable. This study examined this interaction as well as the interaction on the probability of tolerance of shake and shout and three noxious stimulations by using a response surface methodology. ⋯ For both electroencephalographic suppression and tolerance to stimulation, the interaction of propofol and sevoflurane was identified as additive. The response surface data can be used for more rational dose finding in case of sequential and coadministration of propofol and sevoflurane.
-
Randomized Controlled Trial
Early phase pharmacokinetics but not pharmacodynamics are influenced by propofol infusion rate.
Conventional compartmental pharmacokinetic models wrongly assume instantaneous drug mixing in the central compartment, resulting in a flawed prediction of drug disposition for the first minutes, and the flaw affects pharmacodynamic modeling. This study examined the influence of the administration rate and other covariates on early phase kinetics and dynamics of propofol by using the enlarged structural pharmacokinetic model. ⋯ This study found that a combined pharmacokinetic-dynamic model consisting of a two-compartmental model with a LAG time and presystemic compartments and a sigmoidal maximum possible drug effect model accurately described the early phase pharmacology of propofol during infusion rate between 10 and 160 mg . kg(-1). h(-1). The infusion rate has an influence on kinetics, but not dynamics. Age was a covariate for LAG time.
-
Randomized Controlled Trial
Epidural analgesia in the latent phase of labor and the risk of cesarean delivery: a five-year randomized controlled trial.
The optimal timing of epidural analgesia has been a controversial issue, and how early women can benefit from epidural analgesia is still debated. The objective of this trial was to test the hypothesis that patient-controlled epidural analgesia given at cervical dilation of 1.0 cm or more does not increase the risk of prolonged labor or Cesarean delivery. ⋯ Epidural analgesia in the latent phase of labor at cervical dilation of 1.0 cm or more does not prolong the progression of labor and does not increase the rate of Cesarean in nulliparous women compared with the delayed analgesia at the cervical dilation of 4.0 cm or more.