Anesthesiology
-
A stimulation current of no more than 0.5 mA is regarded as safe in avoiding nerve injury and delivering adequate stimulus to provoke a motor response. However, there is no consistent level of stimulating threshold that reliably indicates intraneural placement of the needle. The authors determined the minimally required stimulation threshold to elicit a motor response outside and inside the most superficial part of the brachial plexus during high-resolution, ultrasound-guided, supraclavicular block. ⋯ Within the limitations of this study and the use of ultrasound, a stimulation current of 0.2 mA or less is reliable to detect intraneural placement of the needle. Furthermore, stimulation currents of more than 0.2 and no more than 0.5 mA could not rule out intraneural position.
-
Randomized Controlled Trial Comparative Study
Approach combining the airway scope and the bougie for minimizing movement of the cervical spine during endotracheal intubation.
The Airway Scope (AWS, AWS-S100; Hoya-Pentax, Tokyo, Japan), a recently introduced video laryngoscope, has been reported to reduce movement of the cervical spine during intubation attempts in comparison with conventional laryngoscopes. Use of the bougie as an aid for the AWS may cause further reduction. The authors compared cervical spine movement during intubation with the AWS with and without a bougie. ⋯ Use of the bougie resulted in significantly reduced extension of the cervical spine during intubation attempt with the AWS in patients with a normal cervical spine.
-
Randomized Controlled Trial Comparative Study
Is the performance of acceleromyography improved with preload and normalization? A comparison with mechanomyography.
Many studies have indicated that acceleromyography and mechanomyography cannot be used interchangeably. To improve the agreement between the two methods, it has been suggested to use a preload and to refer all train-of-four (TOF) ratios to the control TOF (normalization) when using acceleromyography. The first purpose of this study was to test whether a preload applied to acceleromyography would increase the precision and the agreement with mechanomyography. The second purpose was to evaluate whether normalization would improve the agreement with mechanomyography. ⋯ Preload increases the precision of acceleromyography, and normalization of the TOF ratios decreases bias in relation to mechanomyography. When both acceleromyography and mechanomyography are normalized, there is no significant bias between the two methods.