Anesthesiology
-
Because algorithms for difficult airway management, including the use of new optical tracheal intubation devices, require prospective evaluation in routine practice, we prospectively assessed an algorithm for difficult airway management that included two new airway devices. ⋯ Tracheal intubation can be achieved successfully in a large cohort of patients with a new management algorithm incorporating the use of gum elastic bougie, Airtraq, and LMA CTrach™ devices.
-
The mechanisms by which isoflurane injured the developing brain are not clear. Recent work has demonstrated that it is mediated in part by activation of p75 neurotrophin receptor. This receptor activates RhoA, a small guanosine triphosphatase that can depolymerize actin. It is therefore conceivable that inhibition of RhoA or prevention of cytoskeletal depolymerization might attenuate isoflurane neurotoxicity. This study was conducted to test these hypotheses using primary cultured neurons and hippocampal slice cultures from neonatal mouse pups. ⋯ Isoflurane results in RhoA activation, cytoskeletal depolymerization, and apoptosis. Inhibition of RhoA activation or prevention of downstream actin depolymerization significantly attenuated isoflurane-mediated neurotoxicity in developing neurons.
-
Patients with malignant hyperthermia experience an exaggerated metabolic response when exposed to volatile anesthetic gases and succinylcholine. The minimum concentration of anesthetic gas needed to trigger a malignant hyperthermia crisis in humans is unknown and may remain so because of the inherent risks associated with studying the complex nature of this rare and lethal genetic disorder. The Malignant Hyperthermia Association of the United States provides specific instructions on purging anesthesia machines of volatile agents to reduce the risk of exposure. ⋯ Modern anesthesia workstations are more complex and contain more gas absorbing materials. A review of the literature found the current guidelines inadequate to prepare newer generation workstations, which require more time for purging anesthetic gases, autoclaving or replacement of parts, and modifications to the gas delivery system. Protocols must be developed to prepare newer generation anesthesia machines.
-
Editorial Comment
A new phase in anesthetic-induced neurotoxicity research.