Anesthesiology
-
Investigations of the electrophysiology of gaseous anesthetics xenon and nitrous oxide are limited revealing inconsistent frequency-dependent alterations in spectral power and functional connectivity. Here, the authors describe the effects of sedative, equivalent, stepwise levels of xenon and nitrous oxide administration on oscillatory source power using a crossover design to investigate shared and disparate mechanisms of gaseous xenon and nitrous oxide anesthesia. ⋯ Electromagnetic source-level imaging revealed widespread power changes in xenon and nitrous oxide anesthesia, but failed to reveal clear universal features of action for these two gaseous anesthetics. Magnetoencephalographic and electroencephalographic power changes showed notable differences which will need to be taken into account to ensure the accurate monitoring of brain state during anaesthesia.
-
In 2014, the U.S. Drug Enforcement Agency reclassified hydrocodone from Schedule III to Schedule II of the Controlled Substances Act, resulting in new restrictions on refills. The authors hypothesized that hydrocodone rescheduling led to decreases in total opioid dispensing within 30 days of surgery and reduced new long-term opioid dispensing among surgical patients. ⋯ Among patients treated by surgeons who frequently prescribed hydrocodone before the Drug Enforcement Agency 2014 hydrocodone rescheduling rule, rescheduling did not impact long-term opioid receipt, although it was associated with an increase in opioid dispensing within 30 days of surgery.
-
Comment
Does Iso-mechanical Power Lead to Iso-lung Damage?: An Experimental Study in a Porcine Model.
Excessive tidal volume, respiratory rate, and positive end-expiratory pressure (PEEP) are all potential causes of ventilator-induced lung injury, and all contribute to a single variable: the mechanical power. The authors aimed to determine whether high tidal volume or high respiratory rate or high PEEP at iso-mechanical power produce similar or different ventilator-induced lung injury. ⋯ Different ventilatory strategies, delivered at iso-power, led to similar anatomical lung injury. The different systemic consequences of high PEEP underline that ventilator-induced lung injury must be evaluated in the context of the whole body.
-
The mechanisms underlying depression-associated pain remain poorly understood. Using a mouse model of depression, the authors hypothesized that the central amygdala-periaqueductal gray circuitry is involved in pathologic nociception associated with depressive states. ⋯ These findings indicate that the central amygdala-ventrolateral periaqueductal gray pathway may mediate some aspects of pain symptoms under depression conditions.