Anesthesiology
-
Automated medical technology is becoming an integral part of routine anesthetic practice. Automated technologies can improve patient safety, but may create new workflows with potentially surprising adverse consequences and cognitive errors that must be addressed before these technologies are adopted into clinical practice. Industries such as aviation and nuclear power have developed techniques to mitigate the unintended consequences of automation, including automation bias, skill loss, and system failures. ⋯ Medical device manufacturers now evaluate usability of equipment using the principles of human performance and should be encouraged to develop comprehensive training materials that describe possible system failures. Additional research in human-system interaction can improve the ways in which automated medical devices communicate with clinicians. These steps will ensure that medical practitioners can effectively use these new devices while being ready to assume manual control when necessary and prepare us for a future that includes automated health care.
-
Multicenter Study Observational Study
End-tidal to Arterial Gradients and Alveolar Deadspace for Anesthetic Agents.
According to the "three-compartment" model of ventilation-perfusion ((Equation is included in full-text article.)) inequality, increased (Equation is included in full-text article.)scatter in the lung under general anesthesia is reflected in increased alveolar deadspace fraction (VDA/VA) customarily measured using end-tidal to arterial (A-a) partial pressure gradients for carbon dioxide. A-a gradients for anesthetic agents such as isoflurane are also significant but have been shown to be inconsistent with those for carbon dioxide under the three-compartment theory. The authors hypothesized that three-compartment VDA/VA calculated using partial pressures of four inhalational agents (VDA/VAG) is different from that calculated using carbon dioxide (VDA/VACO2) measurements, but similar to predictions from multicompartment models of physiologically realistic "log-normal" (Equation is included in full-text article.)distributions. ⋯ Alveolar deadspace for anesthetic agents is much larger than for carbon dioxide and related to blood solubility. Unlike the three-compartment model, multicompartment (Equation is included in full-text article.)scatter models explain this from physiologically realistic gas uptake distributions, but suggest a residual factor other than solubility, potentially diffusion limitation, contributes to deadspace.
-
Isoflurane Exposure in Juvenile Caenorhabditis elegans Causes Persistent Changes in Neuron Dynamics.
Animal studies demonstrate that anesthetic exposure during neurodevelopment can lead to persistent behavioral impairment. The changes in neuronal function underlying these effects are incompletely understood. Caenorhabditis elegans is well suited for functional imaging of postanesthetic effects on neuronal activity. This study aimed to examine such effects within the neurocircuitry underlying C. elegans locomotion. ⋯ Altered locomotive behavior and activity dynamics indicate a persistent effect on interneuron dynamics and circuit function in C. elegansafter developmental exposure to isoflurane. These effects are modulated by a loss of daf-16 or mTOR activity, consistent with a pathologic activation of stress-response pathways.
-
Comparative Study
Benefit and Risk Evaluation of Biased μ-Receptor Agonist Oliceridine versus Morphine.
To improve understanding of the respiratory behavior of oliceridine, a μ-opioid receptor agonist that selectively engages the G-protein-coupled signaling pathway with reduced activation of the β-arrestin pathway, the authors compared its utility function with that of morphine. It was hypothesized that at equianalgesia, oliceridine will produce less respiratory depression than morphine and that this is reflected in a superior utility. ⋯ These data indicate a favorable oliceridine safety profile over morphine when considering analgesia and respiratory depression over the clinical concentration range.