Anesthesiology
-
Unfractionated heparin, administered during venoarterial extracorporeal membrane oxygenation to prevent thromboembolic events, largely depends on plasma antithrombin for its antithrombotic effects. Decreased heparin responsiveness seems frequent on extracorporeal membrane oxygenation; however, its association with acquired antithrombin deficiency is poorly understood. The objective of this study was to describe longitudinal changes in plasma antithrombin levels during extracorporeal membrane oxygenation support and evaluate the association between antithrombin levels and heparin responsiveness. The hypothesis was that extracorporeal membrane oxygenation support would be associated with acquired antithrombin deficiency and related decreased heparin responsiveness. ⋯ Venoarterial extracorporeal membrane oxygenation support was associated with a moderate acquired antithrombin deficiency, mainly during the first 72 h, that did not correlate with heparin responsiveness.
-
Prospective interventional trials and retrospective observational analyses provide conflicting evidence regarding the relationship between propofol versus inhaled volatile general anesthesia and long-term survival after cancer surgery. Specifically, bladder cancer surgery lacks prospective clinical trial evidence. ⋯ Among patients undergoing bladder cancer surgery under general anesthesia, there was no statistically significant difference in long-term overall survival associated with the choice of propofol or an inhaled volatile maintenance.
-
Tonic inhibition in mouse hippocampal CA1 pyramidal neurons is mediated by α5 subunit-containing γ-aminobutyric acid type A receptors. By Caraiscos VB, Elliott EM, You-Ten KE, Cheng VY, Belelli D, Newell JG, Jackson MF, Lambert JJ, Rosahl TW, Wafford KA, MacDonald JF, Orser BA. Proc Natl Acad Sci U S A 2004; 101:3662-7. ⋯ Before the publication in PNAS, the subunit composition of GABAA receptors that generate the tonic current was unknown. The team's research showed that GABAA receptors containing the α5 subunit (α5GABAARs) generated the tonic inhibitory current in hippocampal neurons. α5GABAARs are highly sensitive to GABA, desensitize slowly, and are thus well suited for detecting low, persistent, ambient concentrations of GABA in the extracellular space. Interest in α5GABAARs has surged since the PNAS report, driven by their pivotal roles in cognitive processes and their potential as therapeutic targets for treating various neurologic disorders.