Neuroscience
-
The effects of elevated CO2 (i.e. hypercapnia) on neurons in the nucleus tractus solitarii were studied using extracellular (n = 82) and intracellular (n = 33) recording techniques in transverse brain slices prepared from rat. Synaptic connections from putative chemosensitive neurons in the ventrolateral medulla were removed by bisecting each transverse slice and discarding the ventral half. In addition, the response to hypercapnia in 20 neurons was studied during high magnesium-low calcium synaptic blockade. ⋯ These neurons were not driven synaptically by putative chemosensitive neurons of the ventrolateral medulla since this region was removed from the slice. Furthermore, because chemosensitivity persisted in most neurons tested during synaptic blockade, we conclude that some neurons in the nucleus tractus solitarii are inherently CO2-chemosensitive. Although the function of dorsal medullary chemosensitive neurons cannot be determined in vitro, their location and their inherent chemosensitivity suggest a role in cardiorespiratory central chemoreception.
-
We have examined the distribution of microglia in the normal adult mouse brain using immunocytochemical detection of the macrophage specific plasma membrane glycoprotein F4/80. We were interested to learn whether the distribution of microglia in the adult brain is related to regional variation in the magnitude of cell death during development and resulting monocyte recruitment, or whether the adult distribution is influenced by other local microenvironmental cues. We further investigated the possibility that microglia are sensitive to their microenvironment by studying their morphology in different brain regions. ⋯ They can be extremely elaborate and there is wide variation in the length and complexity of branching of the processes. There was no evidence of monocyte-like cells in the adult CNS. The systematic variation in microglial morphology provides further evidence that these cells are sensitive to their microenvironment.
-
The distribution of acetylcholinesterase and of two neuropeptide (substance P and calcitonin gene-related peptide) immunoreactivities has been investigated in sensory neurons of lumbosacral dorsal root ganglia during chick embryo development, combining immunolocalization of neuropeptides with simultaneous histochemical detection of acetylcholinesterase, in order to study co-localization of the two peptides and their relations with acetylcholinesterase. Acetylcholinesterase at E7 of development appears in only a few neurons, usually the larger ones located in the lateroventral region of the ganglia. As development proceeds the number of neurons and intensity of staining increase. ⋯ Neuropeptide-positive cells are usually devoid of any acetylcholinesterase activity until E15. They become positive for the enzyme at later stages. The significance of acetylcholinesterase expression in sensory neurons and the possible relation of its appearance and neuron size is discussed.
-
Intracellular recordings from the intermediolateral cell nucleus of the neonate rat thoracolumbar spinal cord slice preparation revealed a population of neurons which displayed three types of spontaneous rhythmic activity: burst firing, tonic beating and membrane oscillations. Most neurons displayed more than one of these types of activity. Neurons had mean resting potentials of -59 mV and input resistances ranging from 10 to 48 m omega. ⋯ Burst firing was abolished by cobalt and membrane hyperpolarization but not by barium, low calcium or tetraethylammonium chloride. The switch from tonic beating to burst firing may, in part, involve activation of a voltage- and calcium-dependent afterdepolarization potential. We conclude that a population of neurons in the lateral horn of the spinal cord are capable of rhythmic activity with underlying spontaneous pacemaker-like oscillations.
-
Local treatment of rat peripheral nerves with capsaicin induces permanent impairment of afferent C-fiber functions and changes in the response properties of spinal dorsal horn neurons. In this study a new experimental approach, the "capsaicin gap" technique, has been utilized in an attempt to unravel pathomorphological alterations which commence in the domain of primary sensory neurons as a consequence of perineural treatment with capsaicin. The technique relies on the facts that peripheral nerves in the spinal dorsal horn are represented in a strict somatotopic manner, and on the observation that in the adult rat systemic injection of appropriate doses of capsaicin results in a selective degeneration of primary afferent fibers within Rexed's laminae I and II of the spinal cord. ⋯ It is concluded that the central terminals of capsaicin-sensitive sciatic afferents underwent transganglionic degeneration as a result of prior perineural treatment with capsaicin, and a subsequent systemic injection of this neurotoxin therefore failed to cause axon terminal degeneration in somatotopic areas served by the treated nerve. Comparative quantitative morphometric analysis of cell populations of dorsal root ganglia related to capsaicin- or vehicle-treated nerves disclosed (1) a marked reduction in the proportion of small-sized neurons, (2) a fall of about 80% in the percentage of neurons which undergo degeneration after the systemic injection of capsaicin, and (3) a marked decrease in the total number of neurons in ganglia ipsilateral to the capsaicin-treated nerves. Quantitative electron microscopic studies on saphenous nerves treated perineurally with capsaicin revealed a 32% reduction in the number of unmyelinated axons as compared with the controls, whereas the number of myelinated fibers was unchanged.(ABSTRACT TRUNCATED AT 400 WORDS)