Neuroscience
-
Comparative Study
Down-regulation of mu-opioid receptors in rat and monkey dorsal root ganglion neurons and spinal cord after peripheral axotomy.
To understand the role of opioids and their receptors in chronic pain following peripheral nerve injury, we have studied the mu-opioid receptor in rat and monkey lumbar 4 and 5 dorsal root ganglion neurons and the superficial dorsal horn of the spinal cord under normal circumstances and after peripheral axotomy. Our results show that many small neurons in rat and monkey dorsal root ganglia, and some medium-sized and large neurons in rat dorsal root ganglia, express mu-opioid receptor-like immunoreactivity. Most of these neurons contain calcitonin gene-related peptide. ⋯ The decrease in mu-opioid receptor-like immunoreactivity was more pronounced in the monkey than in the rat dorsal root ganglia and spinal cord. It is probable that there was a parallel trans-synaptic down-regulation of mu-opioid-like immunoreactivity in local dorsal horn neurons of the monkey. These data suggest that one factor underlying the well known insensitivity of neuropathic pain to opioid analgesics could be due to a marked reduction in the number of mu-opioid receptors in the axotomized sensory neurons and in interneurons in the dorsal horn of the spinal cord.
-
Chronic polyarthritis due to complete Freund's adjuvant injection is characterized by severe inflammation and pain. In the present immunocytochemical and in situ hybridization study on the rat, we quantitatively investigated peptide and peptide messenger RNA expression in the sensory circuit at the spinal level, i.e. sensory neurons in the dorsal root ganglia and in nerve endings and local neurons in the dorsal horn of the spinal cord. The immunocytochemical experiments were carried out five, 13 and 21 days after complete Freund's adjuvant injection, whereas in situ hybridization study was performed after 21 days from complete Freund's adjuvant injection. ⋯ These data indicate that peptide expression in dorsal root ganglia and the spinal cord is markedly influenced by severe inflammation with distinct and individual temporal patterns, which are also related to the severe rearrangement of joint structure during polyarthritis. The increase in galanin levels in dorsal root ganglia 21 days after complete Freund's adjuvant injection can be related to the structural damage of nerve fibres. Thus, there may be a transition from inflammatory to neuropathic pain, which could have consequences for treatment of patients with rheumatoid arthritis.
-
Central reorganization is known to occur in chronic pain models resulting from peripheral injury. Systematic analysis of anatomical and behavioural changes and a comparison of these changes between different models over an extended time course has not been reported. We address this issue by quantifying alterations in markers known to be associated with central reorganization in three models of peripheral injury: complete Freund's adjuvant induced inflammation of the hindpaw, chronic constriction of the sciatic nerve, and tight ligation of the sciatic nerve. ⋯ Changes were maximal for inflammation at four days (75.2%+/-9.3%), for chronic constriction injury at four days (85.1%+/-14.6%) and for tight ligature at 14 days (85.7%+/-11.4%). Comparison of behavioural and anatomical data demonstrates that the peak hyperalgesia is concomitant with the greatest increase in neurokinin-1 receptor immunodensity ipsilateral to the injury. The increase in mu-opioid receptor immunodensity parallels behaviour but with a delayed time course, peaking as hyperalgesia abates, except in the case of tight ligature animals where the decrease in immunolabelling appears permanent. (ABSTRACT TRUNCATED)
-
There is abundant evidence that opioid receptors are present on peripheral terminals of primary afferent neurons. Experimental and clinical studies have shown that activation of these peripheral opioid receptors produces potent analgesia. In addition to peripheral opioid receptors, cholecystokinin receptors are present in sensory neurons. ⋯ These results indicate that activation of peripheral cholecystokininB but not cholecystokininA receptors attenuates the local antinociceptive effects of mu-opioid receptor agonists in inflamed tissue. This anti-opioid effect may be mediated by protein kinase C in sensory nerve terminals. Endogenous cholecystokinin does not seem to influence the efficacy of peripheral opioids under both normal and inflammatory conditions.
-
The effects of glial cell line-derived neurotrophic factor on axonal outgrowth and apoptosis were studied in vitro using explanted dorsal root ganglia-peripheral nerve preparations of adult mice. In gels of matrigel or collagen type 1, glial cell line-derived neurotrophic factor increased both the numbers and lengths of axons growing out of explanted preparations, although less effectively than nerve growth factor. Stimulation of axonal outgrowth by glial cell line-derived neurotrophic factor was unaffected by K252a, a protein kinase inhibitor which blocks the effects of nerve growth factor and other neurotrophins acting through trk receptors. ⋯ In separate preparations it was found that in the presence of glial cell line-derived neurotrophic factor, the majority of the 1B4 labelled axons were trkA negative, indicating that this factor can stimulate axonal growth in this population of neurons which do not respond to the neurotrophins. Spontaneous apoptosis in neurons and satellite cells occurs in explanted preparations of the type used in the present investigations, but in cryostat sections of preparations cultured in the presence of glial cell line-derived neurotrophic factor, the incidence of apoptosis was lower than in control preparations which had been cultured in the absence of this factor. This suggests that glial cell line-derived neurotrophic factor may promote survival of some adult sensory neurons in vitro.