Neuroscience
-
An investigation was made of the effects of the nitric oxide synthase inhibitor NG-nitro-L-arginine methyl ester (L-NAME) on the acquisition and retention of two operantly conditioned discrimination tasks. Twenty Long-Evans rats were conditioned to approach one of two spatial locations that was either held constant across trials (spatial task) or was associated with a visual cue (illuminated lamp) that was randomly assigned to one of the locations on each trial (cued task). Rats were assigned to one of two treatment groups in which they received intraperitoneal injections of either NG-nitro-L-arginine methyl ester or saline approximately 2 h before sessions on each day of training. ⋯ Whereas results from biochemical and physiological investigations have suggested an impact of nitric oxide synthase on behavioural function, behavioural investigations indicate a limited impact of nitric oxide synthase inhibition on learning and memory. Although these results do not discount the role of nitric oxide synthase in a hippocampal mechanism, they illustrate that behavioural analysis should be made in the context of multiple interacting neural systems. Viewed with previous behavioural research on the effects of NG-nitro-L-arginine methyl ester, these results indicate that nitric oxide synthase inhibition results in impairment of certain forms of learning whereas other forms are preserved.
-
Previous work in our laboratory has revealed that the excitability of lateral amygdaloid projection neurons is tightly regulated by GABA-mediated inhibitory postsynaptic potentials and intrinsic conductances that can be activated by synaptic inputs. Here, we studied the synaptic responsiveness of lateral amygdaloid interneurons recorded intracellularly in vivo, in the cat, to investigate their role in regulating the activity of projection cells. Interneurons were identified morphologically by their aspiny dendritic trees and physiologically by their ability to generate high frequency, non-adapting spike trains in response to depolarizing current pulses. ⋯ In light of previous findings indicating that inhibition in the lateral amygdaloid nucleus arises mostly from local inhibitory neurons, these results suggest that interneurons are synaptically coupled via GABAA receptors. Moreover, the opposite response profiles of interneurons and projection cells to cortical shocks indicate that interneurons play a critical role in regulating the activity of projection cells. The cellular interactions evidenced in the present study suggest that the lateral amygdaloid nucleus is endowed with an inhibitory gating mechanism that regulates information flow through the amygdala.