Neuroscience
-
The present study examined immunohistochemically the CNS distributions of a splice variant of the mu-opioid receptor, MOR-1D, in both rats and mice. In MOR-1D, exon 4 of MOR-1 is replaced by two additional exons that code for seven amino acids. Using rabbit antisera, we compared immunohistochemically the regional distribution of a C-terminal epitope of MOR-1D to that of a C-terminal epitope from MOR-1 and a C-terminal epitope from another splice variant, MOR-1C. ⋯ MOR-1D and MOR-1C are splice variants of the cloned mu-opioid receptor MOR-1. Although they differ only at the tip of the carboxy terminus, they show marked differences in their regional distributions, as determined immunohistochemically by epitopes in their unique carboxy termini. Since the splice variants are derived from the same gene, these differences in regional distribution imply region-specific messenger RNA processing.
-
The effect of noradrenaline was studied in principal neurons of the substantia nigra pars reticulata in rat brain slices using patch clamp recordings. Perfusion of noradrenaline or the alpha(1)-adrenoceptor agonist phenylephrine increased the spontaneous firing activity of reticulata cells. The alpha(1)-adrenoceptor antagonist prazosin counteracted the effects of noradrenaline. ⋯ It is suggested that noradrenaline increases the excitability of substantia nigra reticulata cells through alpha(1)-adrenoceptors. Both a reduction and an increase in membrane conductance may mediate this effect. The increase in the tonic firing of principal reticulata cells caused by noradrenaline may have significant consequences in regulating the final output of the basal ganglia and consequently in motor-related behaviours.
-
Acute neuropathology following experimental traumatic brain injury results in the rapid necrosis of cortical tissue at the site of injury. This primary injury is exacerbated in the ensuing hours and days via the progression of secondary injury mechanism(s) leading to significant neurological dysfunction. Recent evidence from our laboratory demonstrates that the immunosuppressant cyclosporin A significantly ameliorates cortical damage following traumatic brain injury. ⋯ The findings demonstrate that the neuroprotection afforded by cyclosporin A is dose-dependent and that a therapeutic window exists up to 24h post-injury. Furthermore, the optimal cyclosporin dosage and regimen markedly reduces disruption of the blood-brain barrier acutely following a cortical contusion injury, and similarly affords significant neuroprotection following fluid percussion injury. These findings clearly suggest that the mechanisms responsible for tissue necrosis following traumatic brain injury are amenable to pharmacological intervention.
-
To determine whether initial nociceptive inputs caused by subcutaneous injection of formalin into the hindpaw are necessary and/or sufficient for allodynic behavior and microglial activation observed at one week following behavior, we examined Sprague-Dawley rats under five test conditions. Test condition 1. Formalin alone group (six rats), 5% formalin was injected subcutaneously into the dorsal side of the right hind paw. ⋯ The lumbar spinal cord was immunohistochemically processed at one week to assess the expression of a marker for activated microglia. The results showed: (i) pre-treatment with bupivacaine blocked both phases of formalin-evoked pain behaviors and the mechanical allodynia that developed one week post-formalin injection, but did not block microglial activation; (ii) treatment with bupivacaine 1h after formalin injection reduced paw edema and prevented skin ulceration, but one week allodynia and microglial activation were still present; and (iii) prolonged spinal microglial activation was not dependent on acute formalin-induced nociceptor activity, but was strongly associated with the amount of tissue destruction. Our studies suggest that: (i) the central sensitization associated with the phase II of formalin-evoked behaviors and spinal microglial activation are both necessary to permit the development of the long-term hyperalgesia produced by the subcutaneous administration of formalin into the rat's hindpaw; and (ii) acute nociceptive inputs following formalin injection are not necessary for central microglial activation that may be triggered by nerve damage or prolonged signals from peripherally inflamed tissue
-
We studied the effects of reversible cooling on synaptic transmission in slices of rat visual cortex. Cooling had marked monotonic effects on the temporal properties of synaptic transmission. It increased the latency of excitatory postsynaptic potentials and prolonged their time-course. ⋯ Paired-pulse facilitation was less at lower temperatures, indicating that synaptic dynamics are different at room temperature as compared with physiological temperatures. These results have important implications for extrapolating in vitro data obtained at room temperatures to higher temperatures. The data also emphasize that inactivation by cooling might be a useful tool for studying interactions between brain regions, but the data recorded within the cooled area do not allow reliable conclusions to be drawn about neural operations at normal temperatures.