Neuroscience
-
The present study was designed to investigate the role of protein kinase C (PKC) isoform in the morphine-induced reinforcing effect in mice. An intracerebroventricular injection of calphostin C, a specific PKC inhibitor, produced a dose-dependent reduction in the morphine-induced place preference. The protein level of PKCgamma was significantly up-regulated in membrane preparations of the limbic forebrain obtained from the morphine-conditioned mice compared to that from the saline-conditioned mice. ⋯ Furthermore, we investigated the rewarding properties of morphine in mice lacking PKCgamma gene. A significant place preference was observed following treatment with morphine in wild-type mice, whereas such an effect of morphine was not found in PKCgamma knockout mice. These findings suggest that activated PKCgamma in the limbic forebrain following the treatment with morphine may be critical for the development and/or maintenance of reinforcing effects induced by morphine in mice.
-
Spinal motor neurons undergo experience-dependent development during a critical period in early postnatal life. It has been suggested that the repertoire of glutamate receptor subunits differs between young and mature motor neurons and contributes to this activity-dependent development. In the present study we examined the expression patterns of N-methyl-D-aspartate- and kainate-type glutamate receptor subunits during the postnatal maturation of the spinal cord. ⋯ Other spinal cord regions display a distinct pattern of developmental regulation of N-methyl-D-aspartate and kainate receptor subunit expression in comparison to motor neurons. Our findings indicate a precise spatio-temporal regulation of individual subunit expression in the developing spinal cord. Specific combinations of subunits in developing neurons influence their excitable properties and could participate in the emergence of adult neuronal form and function.
-
Comparative Study
Comparative immunohistochemical localisation of GABA(B1a), GABA(B1b) and GABA(B2) subunits in rat brain, spinal cord and dorsal root ganglion.
GABA(B) receptors are G-protein-coupled receptors mediating the slow onset and prolonged synaptic actions of GABA in the CNS. The recent cloning of two genes, GABA(B1) and GABA(B2), has revealed a novel requirement for GABA(B) receptor signalling. Studies have demonstrated that the two receptor subunits associate as a GABA(B1)/GABA(B2) heterodimer to form a functional GABA(B) receptor. ⋯ This suggests that most, if not all, GABA(B1) immunoreactivity may represent functional GABA(B) receptors. Although our data are in general agreement with functional studies, some discrepancies in GABA(B1) subunit expression occurred with respect to other immunohistochemical studies. Overall our data suggest that GABA(B) receptors are widely expressed throughout the brain and spinal cord, and that GABA(B1a) and GABA(B1b) subunits can associate with GABA(B2) to form both pre- and post-synaptic receptors.
-
Several types of changes have been reported to occur in dorsal root ganglia following peripheral nerve injury, including loss of neurons and increases and decreases in peptide expression. However, with regard to loss of neurons, results have not been consistent, presumably due to different quantitative methodologies employed and species analyzed. So far, most studies have been conducted on rats; however, with the fast development of the transgenic techniques, the mouse has become a standard model animal in primary sensory research. ⋯ Neurol. 422, 172-180], the present results indicate a dramatic loss already after 1 week in mouse. It is suggested that the proximity in physical distance of the lesion to the cell body is a critical factor for the survival of the target-deprived neurons. Finally, stereological methodology seems warranted when assessing the total number of neurons as well as changes in peptide regulations after axotomy in mouse.
-
Chronic constriction injury of the sciatic nerve and lumbar L5 and L6 spinal nerve ligation provide animal models for pain syndromes accompanying peripheral nerve injury and disease. In the present study, we evaluated changes in brain-derived neurotrophic factor (BDNF) immunoreactivity in the rat L4 and L5 dorsal root ganglia (DRG) and areas where afferents from the DRG terminates (the L4/5 spinal cord and gracile nuclei) in these experimental models of neuropathic pain. Chronic constriction injury induced significant increase in the percentage of small, medium and large BDNF-immunoreactive neurons in the ipsilateral L4 and L5 DRG. ⋯ Both chronic constriction injury and spinal nerve ligation induced significant increase in the number of BDNF-immunoreactive axonal fibers in the superficial and deeper laminae of the L4/5 dorsal horn and the gracile nuclei on the ipsilateral side. Considering that BDNF may modulate nociceptive sensory inputs and that injection of antiserum to BDNF significantly reduces the sympathetic sprouting in the DRG and allodynic response following sciatic nerve injury, our results also may suggest that endogenous BDNF plays an important role in the induction of neuropathic pain after chronic constriction injury and spinal nerve ligation. In addition, the increase of BDNF in L4 DRG may contribute to evoked pain which is known to be mediated by input from intact afferent from L4 DRG following L5 and L6 spinal nerve ligation.