Neuroscience
-
Excitotoxicity, which is mediated by the excessive activation of glutamate receptors, has been implicated in the pathogenesis of amyotrophic lateral sclerosis (ALS). There is substantial information about the distribution and function of ionotropic glutamate receptors in the spinal cord, although the role of metabotropic glutamate receptors (mGluRs) is poorly understood in this region of the brain, particularly under pathological conditions. We used immunocytochemistry to study the general distribution of group I and group II mGluR immunoreactivity in the human spinal cord, as well as the cell-specific expression of these receptors. ⋯ Regional differences in immunoreactivity were apparent in ALS compared to control. In particular, mGluR expression was increased in reactive glial cells in both gray (ventral horn) and white matter of ALS spinal cord. Upregulation of mGluRs in reactive astrocytes may represent a critical mechanism for modulation of glial function and changes in glial-neuronal communication in the course of neurodegenerative diseases.
-
Estrogens can influence the survival, plasticity and function of many adult neurons. Many of these effects, such as neurite outgrowth and increased dendritic spine density, are mediated by changes in neuronal cytoskeletal architecture. Since neurofilament proteins play a key role in the maintenance and remodeling of the neuronal cytoskeleton, we postulated that changes in neurofilament light chain mRNA may parallel some of the alterations in neuronal architecture which follow bilateral ovariectomy. ⋯ We propose that atrophic changes involving basal forebrain projection fibers are followed by compensatory axonal growth by other 'intact' basal forebrain neurons. Increased neurofilament light chain mRNA expression and somatic hypertrophy in medial septal neurons may both be reflective of the need to sustain an axonal network which is larger and more complex. In contrast, increased neurofilament light chain mRNA expression observed in basal forebrain targets following long-term ovariectomy may be reflective of compensatory changes taking place in local neurons.
-
We previously reported that Parkinson's disease patients could point with their eyes closed as accurately as normal subjects to targets in three-dimensional space that were initially presented with full vision. We have now further restricted visual information in order to more closely examine the individual and combined influences of visual information, proprioceptive feedback, and spatial working memory on the accuracy of Parkinson's disease patients. All trials were performed in the dark. ⋯ The current study supports an important role for the basal ganglia in the integration of proprioceptive signals with concurrent or remembered visual information that is needed to guide movements. This role can explain much of the patients' dependence on visual information for accuracy in targeted movements. It also underlines what may be an essential contribution of the basal ganglia to movement, the integration of afferent information that is initially processed through multiple, discrete modality-specific pathways, but which must be combined into a unified and continuously updated spatial model for effective, accurate movement.
-
The subthalamic nucleus-globus pallidus network plays a central role in basal ganglia function and dysfunction. To determine whether the relationship between activity in this network and the principal afferent of the basal ganglia, the cortex, is altered in a model of Parkinson's disease, we recorded unit activity in the subthalamic nucleus-globus pallidus network together with cortical electroencephalogram in control and 6-hydroxydopamine-lesioned rats under urethane anaesthesia. Subthalamic nucleus neurones in control and 6-hydroxydopamine-lesioned animals exhibited low-frequency oscillatory activity, which was tightly correlated with cortical slow-wave activity (approximately 1 Hz). ⋯ Inhibitory responses of globus pallidus neurones were abolished by cortical ablation, suggesting that the indirect pathway is augmented abnormally during activation of the dopamine-depleted brain. Taken together, these results demonstrate that both the rate and pattern of activity of subthalamic nucleus and globus pallidus neurones are altered profoundly by chronic dopamine depletion. Furthermore, the relative contribution of rate and pattern to aberrant information coding is intimately related to the state of activation of the cerebral cortex.
-
The basal forebrain cholinergic system is involved in different forms of memory. To study its role in social memory in sheep, an immunotoxin, ME20.4 immunoglobulin G (IgG)-saporin, was developed that is specific to basal forebrain cholinergic neurons bearing the p75 neurotrophin receptor. The distribution of sheep cholinergic neurons was mapped with an antibody against choline acetyltransferase. ⋯ Combined immunotoxin injections into ventricles and the nucleus basalis produced a near complete loss (80-95%) of basal forebrain cholinergic neurons and acetylcholinesterase-positive fibers in the hippocampus, olfactory bulb and entorhinal cortex. This study provides the first anatomical data concerning the basal forebrain cholinergic system in ungulates. The availability of a selective cholinergic immunotoxin effective in sheep provides a new tool to probe the involvement of basal forebrain cholinergic neurons in cognitive processes in this species.