Neuroscience
-
The periaqueductal grey (PAG) region of the brainstem is a known modulator of somatic pain transmission. Migraine is likely to be due to episodic brain dysfunction in pathways involved in the control of pain and other sensory modalities, such as light and sound. To investigate the influence of the PAG on pain transmission from intracranial structures, we examined spinal trigeminal neuronal activity in response to PAG stimulation in a model of trigeminovascular nociception in the cat. ⋯ This effect could be seen both ipsilateral and contralateral to the side of PAG stimulation and was well localised to the ventrolateral PAG. These data demonstrate that a role of the PAG is to inhibit afferent trigeminal nociceptive traffic. Considered with neurosurgical and human functional imaging studies, these data support the notion that brainstem dysfunction might lead to disinhibition of trigeminal afferents and be important in the pain process of migraines.
-
Estrogens can influence the survival, plasticity and function of many adult neurons. Many of these effects, such as neurite outgrowth and increased dendritic spine density, are mediated by changes in neuronal cytoskeletal architecture. Since neurofilament proteins play a key role in the maintenance and remodeling of the neuronal cytoskeleton, we postulated that changes in neurofilament light chain mRNA may parallel some of the alterations in neuronal architecture which follow bilateral ovariectomy. ⋯ We propose that atrophic changes involving basal forebrain projection fibers are followed by compensatory axonal growth by other 'intact' basal forebrain neurons. Increased neurofilament light chain mRNA expression and somatic hypertrophy in medial septal neurons may both be reflective of the need to sustain an axonal network which is larger and more complex. In contrast, increased neurofilament light chain mRNA expression observed in basal forebrain targets following long-term ovariectomy may be reflective of compensatory changes taking place in local neurons.
-
The cholinergic neurons which originate in the mesopontine tegmentum and innervate the midbrain ventral tegmental area have been proposed to play a key role in intracranial self-stimulation reward. This mesopontine area also contains GABA neurons. Detailed information is still lacking, however, about the relationship of cholinergic and GABAergic neurons in this region to self-stimulation reward. ⋯ One hour of self-stimulation significantly increased acetylcholine efflux from this terminal area. These results indicate that intracranial self-stimulation of the medial forebrain bundle may increase acetylcholine release without affecting expression of Fos in cholinergic neurons, while the same stimulation may induce Fos expression in GABAergic neurons of the mesopontine tegmentum. GABAergic as well as cholinergic neurons in this area appear to be activated by self-stimulation reward in the medial forebrain bundle.
-
Acute ambient hypoxia interacts with the ventilatory and cardiocirculatory control systems, via the concomitant activation of arterial chemoreceptors and tissue oxygen-sensing mechanisms. Whether these latter mechanisms may trigger a specific pathway had not yet been elucidated. We addressed this issue, mapping Fos expression in adult conscious rats subjected to tissue hypoxia elicited by carbon monoxide inhalation, under conditions of minimal activation of arterial chemoreceptors. ⋯ In the hypothalamus, activated neurons were identified at the ventral border and in the supramamillary, posterior, and dorsomedial nuclei. Fos expression appeared with increasing the severity of tissue hypoxia in the retrotrapezoid nucleus, the ventral tegmental area and the arcuate and paraventricular hypothalamic nuclei. The present data support the idea that inputs related to tissue hypoxia might play a crucial role in patterning the physiological response to hypoxia.
-
Selection line rats congenitally high or low for autotomy in the neuroma model of neuropathic pain (HA and LA rats) were found to be correspondingly high and low in a second type of neuropathic pain, the Chung model, which employs an alternative phenotypic endpoint, tactile allodynia. It has been proposed that both phenotypes reflect ectopic hyperexcitability in axotomized primary sensory neurons. ⋯ However, in the one neuronal subclass previously linked to neuropathic pain in these models the increase was significantly greater in HA than LA rats, and only at the time when pain scores in the two lines were diverging. Heritable differences in electrical response to axotomy in a specific afferent cell type appear to be a fundamental determinant of neuropathic pain.