Neuroscience
-
Na(+)-independent K(+)-Cl(-) cotransporters function in the regulation of cell volume, control of CNS excitability and epithelial ion transport. Several K(+)-Cl(-) cotransporter isoforms are expressed in the nervous system, and KCC3 in particular is expressed at significant levels in both the brain and spinal cord. The cellular localization of this transporter has, however, not been determined. ⋯ Brain sections also showed white matter enhancement, but also cellular signal consistent with pyramidal neurons and Purkinje cells. The base of the choroid plexus epithelium was also strongly labeled. These data demonstrate the specificity and diversity of KCC3 expression in the mouse CNS.
-
Previous studies suggest that Fgf8 has a key role in regulating vertebrate development. In the rostral head of the embryonic chicken, there are increasing numbers of separate Fgf8 domains; these are present in tissues that appear to have previously expressed Otx2. As Fgf8 expression becomes established, Otx2 expression weakens, but remains in cells abutting the Fgf8 expression domain. ⋯ Thus, these experiments provide evidence that FGF8 can regulate both morphogenesis and patterning of the rostral prosencephalon (telencephalic and optic vesicles). FGF8 beads can induce midline properties (e.g. a sulcus) and can modulate the specification and differentiation of adjacent tissues. We suggest that some of these effects are through regulating the expression of homeobox genes (Otx2 and Emx2) that are known to participate in forebrain patterning.
-
While clinical characteristics of diabetic painful neuropathy are well described, the underlying electrophysiological basis of the exaggerated painful response to stimuli, as well as the presence of spontaneous pain, are poorly understood. In order to elucidate peripheral contributions to painful diabetic neuropathy, we quantitatively evaluated the function of C-fibers in a rat model of painful diabetic neuropathy, diabetes induced by the pancreatic beta-cell toxin streptozotocin. While there was no significant effect of diabetes on conduction velocity, mechanical threshold or spontaneous activity, the number of action potentials in response to sustained threshold and suprathreshold mechanical stimuli was significantly increased in the diabetic rats. ⋯ In summary, in an established model of painful diabetic neuropathy in the rat, a subset of C-fibers demonstrated a marked hyper-responsiveness to mechanical stimuli. The subset was also found to have a greater mean conduction velocity than the fibers not demonstrating this hyper-responsivity. The present findings suggest that study of individual neurons in vitro may allow elucidation of the ionic basis of enhanced nociception in diabetic neuropathy.
-
Voltage-dependent Na-currents were studied, using whole cell voltage clamp, in acutely dissociated, large (mostly Abeta-fiber type) cutaneous afferent dorsal root ganglia neurons (L(4) and L(5)) from the adult rat. Cells were dissociated 14-17 days after axotomy. Control and axotomized neurons were identified via the retrograde marker hydroxy-stilbamide (fluorogold) which was injected into the lateral and plantar region of the skin of the foot and were studied using whole cell patch clamp techniques within 12-20 h of dissociation and plating. ⋯ However, while 77% of control large neurons were observed to express the slower inactivating, tetrodotoxin-resistant current, only 45% of these large neurons did after axotomy. These results indicate that large adult cutaneous afferent dorsal root ganglion neurons (Abeta-type) express tetrodotoxin-sensitive Na-currents, which have much faster repriming than Na-currents in small (C-type) neurons, both before, and after axotomy. Like small neurons, the majority of large neurons downregulate the tetrodotoxin-resistant current following sciatic nerve section.
-
In various chemoconvulsant models of human temporal lobe epilepsy, the induction of epileptogenesis by a prolonged period of continuous seizure activity is accompanied by significant changes in hippocampal structure. These changes include an increase in neurogenesis within the proliferative subgranular zone (SGZ) of the dentate gyrus and induction of mossy fiber sprouting in mature dentate granule cells. As dentate granule cell neurogenesis and axon outgrowth are also hallmarks of hippocampal development, we hypothesized that molecules involved in normal development may also play a role in similar changes associated with epileptogenesis. ⋯ Patterns of expression varied considerably between family members, ranging from the limited expression of Mash1 in the neurogenic SGZ of the dentate gyrus to the scattered, widespread profile of Hes5 throughout the dentate gyrus and the hippocampus proper. Moreover, these varied profiles of expression were differentially regulated following status epilepticus, with some increasing (Mash1, Id2), some falling (Hes5, Prox1), and others remaining mostly unchanged (NeuroD/BETA2, NeuroD2/NDRF, Id3, Rath2/Nex1). While the function of these molecules in the adult brain remains to be characterized, our findings support the idea that molecules controlling cell-fate decisions in the developing dentate gyrus are also operative during seizure-induced neurogenesis and plasticity.