Neuroscience
-
Progenitor cells in the subventricular zone of the lateral ventricle and in the dentate gyrus of the hippocampus can proliferate throughout the life of the animal. To examine the proliferation and fate of progenitor cells in the subventricular zone and dentate gyrus after focal cerebral ischemia, we measured the temporal and spatial profiles of proliferation of cells and the phenotypic fate of proliferating cells in ischemic brain in a model of embolic middle cerebral artery occlusion in the adult rat. Proliferating cells were labeled by injection of bromodeoxyuridine (BrdU) in a pulse or a cumulative protocol. ⋯ Numerous cells immunostained for the polysialylated form of the neuronal cell adhesion molecule were detected in the ipsilateral subventricular zone. Only 6% of BrdU labeled cells exhibited glial fibrillary acidic protein immunoreactivity in the cortex and subcortex and no BrdU labeled cells expressed neuronal protein markers (neural nuclear protein and microtubule associated protein-2). From these data we suggest that focal cerebral ischemia induces transient and regional specific increases in cell proliferation in the ipsilateral hemisphere and that proliferating progenitor cells may exist in the adult cortex.
-
Administration of cocaine to pregnant rabbits produces robust and long-lasting anatomical alterations in the dopamine-rich anterior cingulate cortex of offspring. These effects include increased length and decreased bundling of layer III and V pyramidal neuron dendrites, increases in parvalbumin expression in the dendrites of interneurons, and increases in detectable GABAergic neurons. We have now examined multiple cortical regions with varying degrees of catecholaminergic innervation to investigate regional variations in the ability of prenatal cocaine exposure to elicit these permanent changes. ⋯ These regions included the medial prefrontal, entorhinal, and piriform cortices. In contrast, primary somatosensory, auditory and motor cortices exhibited little tyrosine hydroxylase staining and no measurable cocaine-induced changes in cortical structure. From these data we suggest that the presence of dopaminergic afferents contributes to the marked specificity of the altered development of excitatory pyramidal neurons and inhibitory interneurons induced by low dose i.v. administration of cocaine in utero.
-
To explore the neuronal signaling mechanisms underlying sleep regulation in the rat, the present study examined continuous intra-third ventricle infusion of N-ethylmaleimide (NEM), a sulphydryl reagent that inhibits G(i/o) protein-coupled receptor-mediated signaling pathways. The diurnal infusion of NEM (0.01-10 micromol/10 h) dose-dependently inhibited both non-rapid eye movement sleep and rapid eye movement sleep. A maximal dose of NEM (10 micromol/10 h) dramatically inhibited day-time sleep (-57% for non-rapid eye movement sleep and -89% for rapid eye movement sleep) with a compensatory increase of sleep during the subsequent night-time (+33% for non-rapid eye movement sleep and +259% for rapid eye movement sleep). ⋯ Robust A1R-like immunoreactivity was found in the ventromedial preoptic nucleus and the supraoptic nucleus. Fura-2-based Ca(2+) imaging analysis of acute hypothalamic slices further demonstrated that the A1R agonist N(6)-cyclopentyladenosine (CPA; 200 nM) inhibited spontaneous Ca(2+) oscillations and high potassium (80 mM)-induced Ca(2+) flux in the ventromedial preoptic nucleus, while NEM (100-300 microM) and an A1R antagonist 8-cyclopentyl-dipropylxanthine (300 nM) blocked the CPA actions and increased the high potassium-induced Ca(2+) flux. From these results we suggest that NEM-sensitive G protein-coupled receptor(s) may play an important role in the regulation of sleep and body temperature in the rat and one possible mechanism is an A1R-mediated regulation of intracellular Ca(2+) concentrations in the ventromedial preoptic nucleus.
-
There is growing evidence to suggest that growth hormone plays a role in the growth and development of the CNS. Specifically, growth hormone has been implicated in promoting brain growth, myelination, neuronal arborisation, glial differentiation and cognitive function. Here we investigate if growth hormone has a role in the recovery from an unilateral hypoxic-ischaemic brain injury. ⋯ In summary, we have found that a growth hormone-like factor increased in the brain in the days after injury. In addition, treatment with growth hormone soon after an hypoxic-ischaemic injury reduced the extent of neuronal loss. These results further suggest that a neural growth hormone axis is activated during recovery from injury and that this may act to restrict the extent of neuronal death.
-
The periaqueductal grey (PAG) region of the brainstem is a known modulator of somatic pain transmission. Migraine is likely to be due to episodic brain dysfunction in pathways involved in the control of pain and other sensory modalities, such as light and sound. To investigate the influence of the PAG on pain transmission from intracranial structures, we examined spinal trigeminal neuronal activity in response to PAG stimulation in a model of trigeminovascular nociception in the cat. ⋯ This effect could be seen both ipsilateral and contralateral to the side of PAG stimulation and was well localised to the ventrolateral PAG. These data demonstrate that a role of the PAG is to inhibit afferent trigeminal nociceptive traffic. Considered with neurosurgical and human functional imaging studies, these data support the notion that brainstem dysfunction might lead to disinhibition of trigeminal afferents and be important in the pain process of migraines.