Neuroscience
-
The activity of bulbospinal (presympathetic) vasomotor neurons of the rostral ventrolateral medulla is modulated pre- and postsynaptically by exogenously applied opioid agonists. To determine whether these neurons receive direct opioid inputs, we examined the relationship between bulbospinal barosensitive neurons and nerve terminals immunoreactive for enkephalin in the rostral ventrolateral medulla of rats. By light microscopy, we mapped the distribution of close appositions by enkephalin-immunoreactive varicosities on 10 bulbospinal barosensitive neurons labelled in vivo with biotinamide. ⋯ In summary, enkephalin-immunoreactive terminals in the rostral ventrolateral medulla densely innervate lightly myelinated presympathetic neurons and more sparsely those with unmyelinated axons. Enkephalin is present in both excitatory (glutamate-immunoreactive) and inhibitory (GABA- and/or glycine-immunoreactive) terminals. The data suggest that endogenous enkephalin inhibits amino acid release from terminals that innervate bulbospinal barosensitive neurons of the rostral ventrolateral medulla.
-
The cloning of the receptor for capsaicin, vanilloid receptor 1, has shown it to be non-selective cation channel with a high calcium permeability which can be opened by noxious heat as well as capsaicin. Here we compare the calcium signals produced by native and recombinant capsaicin receptors when activated by either heat or capsaicin by imaging intracellular calcium levels ([Ca2+](i)) in rat dorsal root ganglion neurons and Chinese hamster ovary cells transfected with the rat vanilloid receptor, vanilloid receptor 1. Vanilloid receptor 1 transfected cells and a subset of dorsal root ganglion neurons responded to both capsaicin and to heating to 50 degrees C with rapid, substantial and reversible rises in [Ca2+](i). ⋯ In vanilloid receptor 1 transfected cells, Ruthenium Red (10microM) blocked responses to both capsaicin and heat. These results demonstrate that imaging of [Ca2+](i) can identify dorsal root ganglion neurons which are responsive to both heat and capsaicin. They show that heat and capsaicin responses mediated by native and recombinant capsaicin receptors are similar with respect to the characteristics and pharmacology examined, suggesting that expression of recombinant vanilloid receptor 1 in cell lines accurately reproduces the properties of the native receptor.
-
GABAergic neurons play an important role in the generation of primary afferent depolarization, which results in presynaptic inhibition and, if large enough, triggers dorsal root reflexes. Recent electrophysiological studies by our group have suggested that increased excitation of spinal GABAergic neurons by activation of N-methyl-D-aspartate (NMDA) and non-NMDA receptors following intradermal injection of capsaicin results in the generation of DRRs that contribute to neurogenic inflammation. The present study was to determine if changes in the expression of Fos protein occur in GABAergic neurons in the lumbosacral spinal cord following injection of capsaicin into the glabrous skin of one hind paw of anesthetized rats and if pretreatment with an NMDA receptor antagonist, D-(-)-2-amino-7-phosphonoheptanoic acid (AP7) or a non-NMDA receptor antagonist, 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) blocks Fos expression in these neurons. ⋯ However, when the spinal cord was pretreated with AP7 (5 microg) or CNQX (0.2 microg), only 9.1+/-0.6% or 7.1+/-0.8% of GABA-immunoreactive neuronal profiles were stained for Fos following capsaicin injection. The blockade of the capsaicin-evoked Fos staining was dose-dependent. These findings suggest that GABAergic neurons take part in dorsal horn circuits that modulate nociceptive information and that the function of GABAergic neurons following capsaicin injection is partially mediated by NMDA and non-NMDA receptors.
-
Detailed electrophysiological characterisation of spinal opioid receptors in the mouse has been limited due to various technical difficulties. In this study, extracellular single unit recordings were made from dorsal horn neurones in a perfused spinal cord with attached trunk-hindquarter to investigate the role of delta-opioid receptor in mediating nociceptive and non-nociceptive transmission in mouse. Noxious electrical shock, pinch and heat stimuli evoked a mean response of 20.8+/-2.5 (n=10, P<0.005), 30.1+/-5.4 (n=58, P<0.005) and 40.9+/-6.3 (n=29, P<0.005) spikes per stimulus respectively. ⋯ In contrast, the responses of non-nociceptive dorsal horn neurones were not inhibited by SNC 80 at a dose of up to 10 microM (n=5). These data demonstrate that delta-opioid receptor modulate nociceptive, but not non-nociceptive, transmission in spinal dorsal horn neurones of the adult mouse. The potentiation of neuronal activity by HS 378 may reflect an autoregulatory role of the endogenous delta-opioid in nociceptive transmission in mouse.
-
Comparative Study
Increased conduction velocity of nociceptive primary afferent neurons during unilateral hindlimb inflammation in the anaesthetised guinea-pig.
Decreases in durations of action potentials (C- and Adelta-fibre units) and afterhyperpolarisations (A-fibre units) occur in somata of nociceptive dorsal root ganglion neurons during hindlimb inflammation induced in young guinea-pigs by intradermal injections of Complete Freund's Adjuvant into the ipsilateral leg and foot. Here we present evidence that the single-point conduction velocity (i.e. estimated over a single conduction distance) of these nociceptive neurons is increased during this type of inflammation. The single-point conduction velocities in anaesthetised untreated guinea-pigs (control) were compared with those two and four days after Complete Freund's Adjuvant treatment in two types of experiment. ⋯ The conduction velocity increases may be due to altered expression or activation/inactivation of certain ion channel types, such as Na(+) channels. The present experiments demonstrate that hindlimb inflammation caused a significant increase in conduction velocity of nociceptive but not of low-threshold mechanoreceptive primary afferent neurons during inflammation, as well as a significant decrease in the mean electrical threshold for eliciting the C and Adelta components of compound action potentials of both dorsal root and sural nerves. These changes, together with the previously described changes in the action potential shape of nociceptive neurons during inflammation, probably reflect alterations in membrane function that contribute to inflammatory hyperalgesia.