Neuroscience
-
The aim of this study was to test the hypothesis that under prolonged global ischemic injury, the somatosensory thalamus and the cortex would manifest differential susceptibility leading to varying degrees of thalamo-cortical dissociation. The thalamic electrical responses displayed increasing suppression with longer durations of ischemia leading to a significant thalamo-cortical electrical dissociation. The data also point to a selective vulnerability of the network oscillations involving the thalamic relay and reticular thalamic neurons. ⋯ There was no significant reduction in somatosensory cortical N20 (negative peak in the cortical response at 20 ms after stimulus) amplitude in any of the three groups with asphyxia indicating a thalamo-cortical dissociation in G3. Further, rhythmic spindle oscillations in the thalamic VPL nuclei that normally accompany the ON response recover either slowly after the recovery of ON response (in the case of G1 and G2) or do not recover at all (in the case of G3). We conclude that there is strong evidence for selective vulnerability of thalamic relay neurons and its network interactions with the inhibitory interneurons in the somatosensory pathway leading to a thalamo-cortical dissociation after prolonged durations of global ischemia.
-
Hypocretin 2 (orexin B) is a hypothalamic neuropeptide thought to be involved in regulating energy homeostasis, autonomic function, arousal, and sensory processing. Neural circuits in the caudal nucleus tractus solitarius (NTS) integrate viscerosensory inputs, and are therefore implicated in aspects of all these functions. We tested the hypothesis that hypocretin 2 modulates fast synaptic activity in caudal NTS areas that are generally associated with visceral sensation from cardiorespiratory and gastrointestinal systems. ⋯ The increase in EPSC frequency persisted in the presence of tetrodotoxin, suggesting a role for the peptide in regulating glutamate release in the NTS by acting at presynaptic terminals. These data suggest that hypocretin 2 modulates excitatory, but not inhibitory, synapses in caudal NTS neurons, including viscerosensory inputs. The selective nature of the effect supports the hypothesis that hypocretin 2 plays a role in modulating autonomic sensory signaling in the NTS.
-
Evidence for the participation of Rel/NF-kappaB transcription factors in long-term memory has recently been reported in the context-signal learning paradigm of the crab Chasmagnathus, in which a high correlation between long-term memory formation and NF-kappaB activation was observed. Two components of the NF-kappaB pathway in the crab brain have now been identified by cross-immunoreactivity using mammalian antibodies for IkappaB-alpha and IkappaB kinase alpha. Furthermore, IkappaB kinase-like phosphotransferase activity, which was inhibited by the IkappaB kinase inhibitor sulfasalazine, was detected in brain extracts. ⋯ In vivo sulfasalazine inhibition of basal NF-kappaB activity was found between 30 and 45 min after injection, as assessed by electrophoretic mobility shift assay. On the other hand, in vivo sulfasalazine administration 6 h after training inhibited the second phase of training-induced NF-kappaB activation, providing evidence that the sulfasalazine effect on memory is due to a direct effect of the drug on the NF-kappaB pathway. These results provide the first evidence that IkappaB kinase and NF-kappaB activation are necessary for memory formation.
-
The purpose of the present study was to investigate the role of mu-opioid receptor in inflammatory hyperalgesia in intact and in spinalized animals and the interaction between mu-opioid and alpha2-adrenergic receptor in acute pain and inflammatory hyperalgesia. Behavioral responses to mechanical and heat stimuli were studied in mu-opioid receptor knockout mice and wildtype control mice. Thermal nociception was evaluated by measuring paw withdrawal latencies to radiant heat applied to the hindpaws. ⋯ Our observations indicate that the mu-opioid receptors do not play an important role in alpha2-adrenergic receptor agonist-mediated acute antinociception. In addition, micro-opioid receptors are not tonically involved in the modulation of inflammation-induced mechanical and thermal hyperalgesia, and the supraspinal control of spinal reflexes. However, in the presence of inflammation, mu-opioid receptors play an important role in the antihyperalgesic actions of an alpha2-adrenergic receptor agonist.
-
Although mild traumatic brain injury is associated with behavioral dysfunction and histopathological alterations, few studies have assessed the temporal pattern of regional apoptosis following mild brain injury. Anesthetized rats were subjected to mild lateral fluid-percussion brain injury (1.1-1.3 atm), and brains were evaluated for the presence of in situ DNA fragmentation (terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end-labeling, TUNEL) and morphologic characteristics of apoptotic cell death (nuclear and cytoplasmic condensation, presence of apoptotic bodies). Significant numbers of apoptotic TUNEL(+) cells were observed in the injured parietal cortex and underlying white matter up to 72 h post-injury (P<0.05 compared to sham-injured-injured), with maximal numbers present at 24 h. ⋯ However, selective neuronal loss was evident in the CA3 region at 24 h post-injury, that was preceded by an overt loss of neuronal Bcl-2 immunoreactivity at 6 h. No changes in either cellular Bcl-2 or Bax expression were observed in the thalamus or white matter at any time post-injury. Taken together from these data, we suggest that apoptosis contributes to cell death in both gray and white matter, and that decreases in cellular Bcl-2 may, in part, be associated with both apoptotic and non-apoptotic cell death following mild brain trauma.