Neuroscience
-
Environmental synchronization of the endogenous mammalian circadian rhythm involves glutamatergic and GABAergic neurotransmission within the hypothalamic suprachiasmatic nucleus (SCN). The neuropeptide nociceptin/orphanin FQ (N/OFQ) inhibits light-induced phase shifts, evokes K(+)-currents and reduces the intracellular Ca(2+) concentration in SCN neurons. Since these effects are consistent with a modulatory role for N/OFQ on synaptic transmission in the SCN, we examined the effects of N/OFQ on evoked and spontaneous excitatory and inhibitory currents in the SCN. ⋯ However, N/OFQ had no effect on currents activated by muscimol application or on the amplitude of miniature IPSC (mIPSC) and significantly reduced the mIPSC frequency consistent with an inhibition of GABA release downstream from Ca(2+) entry. Finally, N/OFQ inhibited the paired-pulse depression observed in SCN GABAergic synapses consistent with a presynaptic mechanism of action. Together these results suggest a widespread modulatory role for N/OFQ on the synaptic transmission in the SCN.
-
Injury to the adult CNS often involves death of motoneurons, resulting in the paralysis and progressive atrophy of muscle. There is no effective therapy to replace motoneurons in the CNS. Our strategy to replace neurons and to rescue denervated muscles is to transplant dissociated embryonic day 14-15 (E14-15) ventral spinal cord cells into the distal stump of a peripheral nerve near the denervated muscles. ⋯ FK506-treated muscles were significantly more fatigue resistant than naive control muscles. FK506-treated muscles also had significantly stronger motor units than those in SB203580 or saline-treated muscles. These data suggest that a pathway regulated by FK506 improves the function of muscles reinnervated by embryonic neurons placed in peripheral nerve.
-
Somatostatin, widely distributed in human cortical brain regions, acts through specific high affinity somatostatin receptors (SSTR1-5) to exert profound effects on motor, sensory, behavioral, cognitive and autonomic functions. Somatostatin levels are consistently decreased in the cortex of Alzheimer's disease (AD) brain and in cerebrospinal fluid, and have become reproducible markers of this disease. In the present study, the distributional pattern of SSTR1-5 antigens in the frontal cortex of AD and age-matched control brains was studied using antipeptide polyclonal rabbit antibodies directed against the five human somatostatin receptor subtypes. ⋯ In AD cortex, SSTR1-, 3- and 4-like immunoreactivities were strongly expressed in glial cells but not SSTR2 and 5. These findings suggest the differential loss of immunoreactivity of SSTR2, 4 and 5 but not SSTR1, and increased SSTR3 in frontal cortex of AD brain as well as subtype-selective glial expression in AD brain. In summary, subtype-selective changes in the expression of SSTRs at protein levels in AD cortical regions suggest that somatostatin and SSTR-containing neurons are pathologically involved in AD and could possibly be used as markers of this disease.
-
The major histocompatibility complex (MHC) glycoproteins, MHC1 and MHC2, play a key role in the presentation of antigen and the development of the immune response. In the current study we examined the regulation of the MHC2 in the mouse brain after facial axotomy. The normal facial motor nucleus showed very few slender and elongated MHC2+ cells. ⋯ In almost all cases, MHC2 immunoreactivity was restricted to perivascular macrophages that colocalized with vascular basement membrane laminin and macrophage IBA1-immunoreactivity, with no immunoreactivity on phagocytic microglia, astrocytes or invading T-cells. Heterologous transplantation and systemic injection of endotoxin or IFNgamma did not affect this perivascular MHC2 immunoreactivity, and transgenic deletion of the IL1 receptor type I, or TNF receptor type 1, also had no effect. However, the deletion of IFNgamma receptor subunit 1 caused a significant increase, and that of TNF receptor type 2 a strong reduction in the number of MHC2+ macrophages, pointing to a counter-regulatory role of IFNgamma and TNFalpha in the immune surveillance of the injured nervous system.
-
Comparative Study
Acute fluoxetine administration differentially affects brain C-Fos expression in fasted and refed rats.
In the present study we investigated the effect of acute fluoxetine administration on the expression of c-Fos in the rat brain under two different metabolic conditions: fed and fasting states. Wistar male rats, weighing 220+/-30g, received i.p. injections of saline solution or fluoxetine (10mg/kg), and were killed 2 h later. The brains were removed after transcardiac perfusion with phosphate-buffered saline followed by paraformaldehyde, and were then processed for immunohistochemistry. ⋯ Both in fasting and fed states, fluoxetine-treated animals presented a significant increase in c-Fos expression in hypothalamic areas, limbic structures, circumventricular areas, and in mesencephalic and rhomboencephalic regions, as compared with saline-treated controls. The quantitative comparison of data obtained from fasted and fed animals showed that fasted rats treated with fluoxetine presented a higher c-Fos expression in the ventromedial hypothalamus and the paraventricular nuclei compared with the fed group, while in fluoxetine-treated fed rats c-Fos expression was higher in the arcuate nuclei, medial amygdala, locus coeruleus and dorsal raphe nuclei, as compared with fasted, fluoxetine-treated animals. These data indicate that the metabolic condition of the animals significantly modifies fluoxetine-induced brain c-Fos expression, suggesting that visceral and behavioral fluoxetine effects may be influenced by the metabolic state of the individual.