Neuroscience
-
Extracellular glutamate levels increase as a consequence of perinatal hypoxia/ischemia, causing the death of neurons and oligodendrocytes. Precursors in the subventricular zone (SVZ) also die following perinatal hypoxia/ischemia; therefore we hypothesized that glutamate would stimulate the death of neural precursors. Here we demonstrate using calcium imaging that SVZ derived neural stem/progenitor cells respond to both ionotropic and metabotropic excitatory amino acids. ⋯ In fact, stimulation of either the kainate receptor or group 2 metabotropic glutamate receptors (group 2 mGluR) reduces basal levels of apoptosis and increases neural precursor proliferation. Furthermore, group 2 mGluR activation expands the number of multipotent progenitor cells present in these cultures while maintaining equivalent mature cell production. We conclude that the glutamate released following perinatal hypoxia/ischemia may act to acutely promote the proliferation of multipotent precursors in the subventricular zone.
-
Comparative Study
Effects of perinatal asphyxia on cell proliferation and neuronal phenotype evaluated with organotypic hippocampal cultures.
The present report summarizes studies combining an in vivo and in vitro approach, where asphyxia is induced in vivo at delivery time of Wistar rats, and the long term effects on hippocampus neurocircuitry are investigated in vitro with organotypic cultures plated at postnatal day seven. The cultures preserved hippocampus layering and regional subdivisions shown in vivo, and only few dying cells were observed when assayed with a viability test at day in vitro 27. When properly fixed, cultures from asphyxia-exposed animals showed a decreased amount of microtubule-associated protein-2 immunocytochemically positive cells (approximately 30%), as compared with that from controls. ⋯ Glial fibrillary acidic protein-immunocytochemistry and Fast Red nuclear staining revealed that the core of the hippocampus culture was surrounded by a well-developed network of glial fibrillary acidic protein-positive cells and glial fibrillary acidic protein-processes providing an apparent protective shield around the hippocampus. That shield was less developed in cultures from asphyxia-exposed animals. The increased mitotic activity observed in this study suggests a compensatory mechanism for the long-term impairment induced by perinatal asphyxia, although it is not clear yet if that mechanism leads to neurogenesis, astrogliogenesis, or to further apoptosis.
-
We previously found that the methanol extract of a marine brown alga, Sargassum macrocarpum showed marked nerve growth factor (NGF)-dependent neurite outgrowth promoting activity to PC12D cells. The active substance purified was elucidated to be sargachromenol. The median effective dose (ED50) was 9 microM against PC12D cells in the presence of 10 ng/ml NGF, although it showed no neurotrophic effect on its own. ⋯ On the other hand, sargachromenol significantly promoted the survival of neuronal PC12D cells at 0-50 ng/ml NGF in serum-free medium. Neither PKA inhibitor nor U0126 could inhibit the survival supporting effect of sargachromenol, whereas wortmannin significantly blocked the sargachromenol-induced survival supporting effect on neuronal PC12D cells, suggesting that sargachromenol rescued neuronal PC12D cells by activating phosphatidylinositol-3 kinase. These results demonstrate that sargachromenol promotes neuronal differentiation of PC12D cells and supports the survival of neuronal PC12D cells via two distinct signaling pathways.
-
It is unknown whether the amyloid beta-peptide (Abeta), a principal component found in extracellular neuritic plaques in the brain of patients with Alzheimer's disease (AD), is capable of altering adenylyl cyclase (AC) activity and the somatostatin (SRIF) receptor-effector system in the cerebral cortex of the patients. Therefore, the objective of this study was to investigate the effect of the beta fragment, beta (25-35), on AC activity and the somatostatinergic system in the rat frontoparietal cortex. A single dose of beta (25-35) (10microg) injected intracerebroventricularly significantly decreased the density of SRIF receptors (27.4%) and increased their affinity (32.2%) in the frontoparietal cortex. ⋯ Continuous infusion of Abeta (25-35) had no effect on Gialpha1, Gialpha2 or Gialpha3 levels in membranes from frontal and parietal cortex. However, this treatment caused a decrease in SRIF-like immunoreactivity content in the parietal (38.9%) and frontal (20.4%) cortex. These results suggest that Abeta might be involved in the alterations of somatostatinergic system reported in AD.
-
Although neurokinin-1 receptor (NK-1)-bearing neurons are distributed in lamina I of the trigeminal caudal nucleus (Vc) and constitute major projection neurons, little is known about their fundamental role(s) in nociceptive processing. This study examines the effect of intra cisterna magna injection of substance P (SP) conjugated to saporin (SP-Sap; 5 microM, 5 microl) [with/without systemic administration of bicuculline] on c-Fos expression in the trigeminal sensory nucleus (TSN) induced 2 h after 10 min repetitive electrical stimulation of the trigeminal ganglion (TG) at high intensity (1.0 mA, 5 Hz, 5 ms) in the urethane-anesthetized rat. In the SP-Sap-treated rats, the numbers of NK-1-immunopositive neurons in laminae I and III of the Vc decreased compared with rats similarly pretreated with saline (Sal; 5 microl) or blank-saporin (Bl-Sap; 5 microM, 5 microl). ⋯ In contrast, high intensity stimulation induced less c-Fos-immunopositive neurons in the VcI/II and Vo of rats treated with SP-Sap compared with those in Sal- or Bl-Sap-treated controls. In SP-Sap-treated rats preadministered with bicuculline, the numbers of c-Fos-immunopositive neurons in the VcI/II and Vo were increased compared with the SP-Sap-treated rats preadministered with Sal. These results suggest that NK-1-immunopositive neurons in laminae I and III of Vc play a pivotal role in the nociceptive specific processing in the TSN through GABA(A) receptors.