Neuroscience
-
Slow firing septal neurons modulate hippocampal and neocortical functions. Electrophysiologically, it is unclear whether slow firing neurons belong to a homogeneous neuronal population. To address this issue, whole-cell patch recordings and neuronal reconstructions were performed on rat brain slices containing the medial septum/diagonal band complex (MS/DB). ⋯ Several neurons were labeled with a cholinergic marker, Cy3-conjugated 192 IgG (p75NTR), and cholinergic neurons were found to be distributed among the three clusters. Our findings indicate that slow firing medial septal neurons are heterogeneous and that soma location is an important determinant of their electrophysiological properties. Thus, slow firing neurons from different septal regions have distinct functional properties, most likely related to their diverse connectivity.
-
Lumbar intrathecal injections of substance P-saporin (SP-sap) destroy dorsal horn neurons that express the neurokinin-1 receptor (NK-1R) resulting in decreased responses to a range of noxious stimuli and decreased hyperalgesia and allodynia. Forebrain injections of SP-sap produce considerable non-specific damage raising some concern about use of this toxin in vivo. The more stable and selective substance P congener, [Sar9,Met(O2)11]substance P coupled to saporin (SSP-sap) produces much more selective forebrain lesions at significantly lower doses. ⋯ In summary, SSP-sap is highly effective in destroying lamina I NK-1R expressing neurons, without loss of deep NK-1R neurons. The behavioral effects of SSP-sap are similar to SP-sap suggesting that the antinociceptive effects of both toxins are indeed due to selective loss of NK-1R neurons in lamina I. SSP-sap is an attractive agent for possible treatment of chronic pain.
-
Glutamate receptors are the major excitatory receptors in the vertebrate CNS and have been implicated in a number of physiological and pathological processes. Previous work has shown that glutamate receptor function may be modulated by protein kinase A (PKA)-mediated phosphorylation, although the molecular mechanism of this potentiation has remained unclear. We have investigated the phosphorylation of specific amino acid residues in the C-terminal cytoplasmic domain of the rat kainate receptor subtype 6 (GluR6) as a possible mechanism for regulation of receptor function. ⋯ Single mutations of each serine residue in the C-terminal domain (S815A, S825A, S828A, and S837A) and a truncation after position 855, which removes all threonines (T856, T864, and T875) from the domain, do not abolish PKA potentiation. However, the S825A/S837A mutation, but no other double mutation, abolishes potentiation. These results demonstrate that phosphorylation of the C-terminal tail of GluR6 by PKA leads to potentiation of whole cell response, and the combination of S825 and S837 in the C-terminal domain is a vital component of the mechanism of GluR6 potentiation by PKA.
-
The central piriform cortex (cPC) is considered to be critically involved in the generation and propagation of kindled seizures. Our previous study found that low-frequency stimulation (LFS) of the cPC inhibits the development process of amygdala kindling. In this study, we determined whether unilateral LFS of the cPC had an inhibitory effect on amygdaloid-kindled seizures in Sprague-Dawley rats. ⋯ On the other hand, LFS of the ipsilateral cPC significantly increased the afterdischarge threshold and further increased the differences of current intensity between afterdischarge threshold and generalized seizure threshold. Our data suggest that LFS of the cPC may be an effective method of inhibiting kindled seizures by preventing both afterdischarge generation and propagation. It provide further evidence that brain regions like the cPC, other than the seizure focus, can serve as targets for deep brain stimulation treatment of epilepsy.
-
Activation of the cannabinoid type 1 (CB1) receptor, a major G-protein-coupled receptor in brain, acts to regulate neuronal excitability and has been shown to mediate the anticonvulsant effects of cannabinoids in several animal models of seizure, including the rat pilocarpine model of acquired epilepsy. However, the long-term effects of status epilepticus on the expression and function of the CB1 receptor have not been described. Therefore, this study was initiated to evaluate the effect of status epilepticus on CB1 receptor expression, binding, and G-protein activation in the rat pilocarpine model of acquired epilepsy. ⋯ In addition, this study demonstrates that the redistribution of CB1 receptor expression results in corresponding functional changes in CB1 receptor binding and G-protein activation using [3H] R+-[2,3-dihydro-5-methyl-3-[(morpholinyl)methyl]pyrrolo[1,2,3-de]-1,4-benzoxazin-yl](1-napthalen-yl)methanone mesylate (WIN55,212-2) and agonist-stimulated [35S]GTPgammaS autoradiography, respectively. The redistribution of CB1 receptor-mediated [35S]GTPgammaS binding was 1) attributed to an altered maximal effect (Emax) of WIN55,212-2 to stimulate [35S]GTPgammaS binding, 2) reversed by the CB1 receptor antagonist N-(piperidin-1-yl)-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide hydrochloride (SR141716A), 3) confirmed by the use of other CB1 receptor agonists, and 4) not reproduced in other G-protein-coupled receptor systems examined. These results demonstrate that status epilepticus causes a unique and selective reorganization of the CB1 receptor system that persists as a permanent hippocampal neuronal plasticity change associated with the development of acquired epilepsy.