Neuroscience
-
Mood disorders are the most common psychiatric disorders. Although the mechanisms implicated in the genesis of mood disorders are still unclear, stress is known to predispose to depression, and recently, studies have related hippocampal neurogenesis and apoptosis to depression. In the present study we first examined the balance between cell birth-death in the hippocampus and subventricular zone (SVZ) of pre-pubertal and adult rats subjected to chronic-mild-stress (CMS). ⋯ Interestingly, co-administration of lithium precluded the CMS-induced effects in GSK-3beta, synapsin-I and BAG-1 expression. Our observation that specific inhibition of this kinase with AR-A014418 blocked the effects of CMS in depressive-like behavior and in BAG-1 and synapsin-I expression confirmed the involvement of the GSK-3beta pathway in stress-induced effects. In summary, these results reveal that lithium, by regulating the activity of GSK-3beta, prevents the deleterious effects of stress on behavior and cellular functions.
-
Finely myelinated (type Adelta) and unmyelinated (type C) fibers are the major afferent inputs to spinothalamic tract neurons mediating sensory and reflex responses to noxious and thermal stimuli. These two fiber types differ in their sensory and biophysical properties, raising questions about the interaction of their supraspinal responses. Therefore, we investigated the interaction of cortical responses to stimuli that preferentially excite these fibers in human subjects using evoked potential recordings in a paired conditioning stimulation (CS) and test stimulation (TS) paradigm. ⋯ Furthermore, intra-segmental interaction was differentially effective for Adelta conditioning (peak amplitude, P<0.008; analysis of variance). Our experiments provide the first neurophysiological evidence for a somatotopically distributed, mutually suppressive interaction between cortical responses to preferentially activated Adelta and C afferents in humans. This suppressive interaction of cortical responses suggests contrasting and possibly mutually exclusive sensorimotor functions mediated through the Adelta and C fiber afferent channels.
-
3,4-Methylenedioxymethamphetamine (MDMA or ecstasy) stimulates the transporter-mediated release of monoamines, including 5-HT. High-dose exposure to MDMA causes persistent 5-HT deficits (e.g. depletion of brain 5-HT) in animals, yet the functional and clinical relevance of such deficits are poorly defined. Here we examine functional consequences of MDMA-induced 5-HT depletions in rats. ⋯ MDMA. As tolerance developed only in rats exposed to high-dose binges, hyperthermia and 5-HT depletion are implicated in this phenomenon. Our results suggest that MDMA tolerance in humans may reflect 5-HT deficits which could contribute to further dose escalation.
-
The amygdala modulates memory consolidation with the storage of emotionally relevant information and plays a critical role in fear and anxiety. We examined changes in neuronal morphology and neurotransmitter content in the amygdala of rats exposed to a single prolonged stress (SPS) as a putative animal model for human post-traumatic stress disorder (PTSD). Rats were perfused 7 days after SPS, and intracellular injections of Lucifer Yellow were administered to neurons of the basolateral (BLA) and central amygdala (CeA) to analyze morphological changes at the cellular level. ⋯ Double immunostaining by fluorescence and electron microscopy revealed that NPY immunoreactive terminals were closely associated with calcium/calmodulin II-dependent protein kinase (CaMKII: a marker for pyramidal neurons)-positive neurons in the BLA, which were immunopositive to glucocorticoid receptor (GR) and mineralocorticoid receptor (MR). SPS had no significant effect on the expression of CaMKII and MR/GR expression in the BLA. Based on these findings, we suggest that changes in the morphology of pyramidal neurons in the BLA by SPS could be mediated through the enhancement of NPY functions, and this structural plasticity in the amygdala provides a cellular and molecular basis to understand for affective disorders.
-
Research into the underlying mechanisms of cognitive dysfunction in Alzheimer's disease (AD) has relied traditionally on tasks such as the water maze which evaluate spatial learning and memory. Since non-spatial forms of memory are also disrupted by AD, it is critical to establish other paradigms capable of investigating these deficits. Utilizing a non-spatial learning task, acquisition of conditioned taste aversion (CTA) was evaluated in a mouse model of AD. ⋯ Mice that only possessed one of the two mutations were able to acquire CTA to the saccharin. In 2-5 month old APP/PS1 mice acquisition of CTA was disrupted despite the lack of extensive plaque deposition. However, further analysis indicated a potential gender difference in both the CTA deficit and onset of plaque deposition with females showing greater conditioned aversion.