Neuroscience
-
Activation of the spinal phospholipase A(2) (PLA(2)) -cyclooxygenase (COX) -prostaglandin signaling pathway is widely implicated in nociceptive processing. Although the role of spinal COX isoforms in pain signal transmission has been extensively characterized, our knowledge of PLA(2) enzymes in this cascade is limited. Among all PLA(2) groups, cytosolic calcium-dependent PLA(2) group IVA (cPLA(2)IVA) appears to be the predominant PLA(2) enzyme in the spinal cord. ⋯ Immunocytochemistry confirmed that the reduction occurred in neurons and oligodendrocytes. cPLA(2)IVA AS did not alter expression of several other PLA(2) isoforms, such as secretory PLA(2) (groups IIA and V) and calcium-independent PLA(2) (group VI), indicating that the AS was specific for cPLA(2)IVA. This selective knockdown of spinal cPLA(2)IVA did not change acute nociception (i.e. paw withdrawal thresholds to acute thermal stimuli and intradermal formalin-induced first phase flinching), however, it significantly attenuated formalin-induced hyperalgesia (i.e. second phase flinching behavior), which reflects spinal sensitization. Thus the present findings suggest that cPLA(2)IVA may specifically participate in spinal nociceptive processing.
-
Striatal projection neurons use GABA as their neurotransmitter and express the rate-limiting synthesizing enzyme glutamic acid decarboxylase (GAD) and the vesicular GABA transporter vGAT. The chronic systemic administration of an agonist of dopamine D1/D5-preferring receptors is known to alter GAD mRNA levels in striatonigral neurons in intact and dopamine-depleted rats. In the present study, the effects of a single or subchronic systemic administration of the dopamine D1/D5-preferring receptor agonist SKF-81297 on GAD65, GAD67, PPD and vGAT mRNA levels in the striatum and GABA(A) receptor alpha1 subunit mRNA levels in the substantia nigra, pars reticulata, were measured in rats with a unilateral 6-hydroxydopamine (6-OHDA) lesion. ⋯ Finally, striatal GAD67 mRNA levels were negatively correlated with nigral alpha1 mRNA levels in the dopamine-depleted but not dopamine-intact side. The results suggest that different signaling pathways are involved in the modulation by dopamine D1/D5 receptors of GAD65 and GAD67 mRNA levels in striatonigral neurons. They also suggest that the down-regulation of nigral GABA(A) receptors is linked to the increase in striatal GAD67 mRNA levels in the dopamine-depleted striatum.
-
Sensorimotor gating as measured by prepulse inhibition (PPI) to startle-evoking auditory stimulation (AS) is disrupted in schizophrenia and in rodents receiving systemic administration of apomorphine, a dopamine D1/D2 receptor agonist, or MK-801, an N-methyl-d-aspartate (NMDA) receptor antagonist. The functional analogies and our prior results showing apomorphine- and AS-induced relocation of the dopamine D1 receptor (D1R) in the nucleus accumbens (Acb) shell suggest that apomorphine and AS may affect the subcellular distribution of the NMDA receptor NR1 subunit, a protein that forms protein-protein interactions with the D1R. We quantitatively compared the electron microscopic immunogold labeling for NR1 in dendritic profiles distinguished with respect to presence of D1R immunoreactivity and location in the Acb shell or core of rats receiving a single s.c. injection of vehicle (VEH) or apomorphine (APO) alone, or combined with AS (VEH+AS, APO+AS). ⋯ D1R-containing small dendrites in the Acb shell of the APO+AS group also showed a significantly higher density of plasmalemmal and a lower density of cytoplasmic NR1 immunogold particles compared with VEH or APO groups. In the Acb core, the APO+AS group had significantly fewer dendritic spines co-expressing NR1 and D1R compared with VEH or VEH+AS groups. These results, together with our earlier findings, suggest that NMDA receptors are preferentially mobilized in D1R-containing Acb neurons of rats showing apomorphine-induced disruption of PPI in a paradigm using acoustic stimulation.
-
Statins are increasingly being used for the treatment of a variety of conditions beyond their original indication for cholesterol lowering. We previously reported that simvastatin affected the dopaminergic system in the rat brain. This study aims to investigate regional changes of muscarinic M1/4 receptors in the rat brain after 4-week administration of simvastatin (1 or 10 mg/kg/day). ⋯ Our results also provide strong evidence that chronic simvastatin administration, especially at a low dosage, up-regulates M1/4 receptor binding, which is likely to be independent of its muscarinic agonist-like effect. Alterations in [(3)H]pirenzepine binding in the examined brain areas may represent the specific regions that mediate the clinical effects of simvastatin treatment on cognition and memory via the muscarinic cholinergic system. These findings contribute to a better understanding of the critical roles of simvastatin in treating neurodegenerative disorders, via muscarinic receptors.
-
The appropriate level of microtubule stability is fundamental in neurons to assure correct polarity, migration, vesicles transport and to prevent axonal degeneration. In the present study, we have identified Notch pathway as an endogenous microtubule stabilizer. ⋯ However, contrary to Taxol, Jagged1 induced downregulation of the microtubule severing protein Spastin. We suggest that a fine-tuned manipulation of Notch signaling may represent a novel approach to modulate neuronal cytoskeleton plasticity.