Neuroscience
-
The GABA(B) receptor (GABA(B)R) agonist baclofen is known to have a beneficial potency in patients who suffer from dystonia, a neurological syndrome characterized by involuntary co-contractions of opposing muscles. The underlying mechanisms of this movement disorder are still unclear. Previous studies in the dt(sz) hamster, an animal model of primary paroxysmal dystonia, revealed alterations of the GABAergic system, including a reduction of striatal GABAergic interneurons and an altered GABA(A) receptor (GABA(A)R) binding in several brain regions. ⋯ Single striatal administration of the selective GABA(B)R antagonist CGP 35348 [(3-Aminopropyl)(diethoxymethyl)phosphinic acid, 5 and 10 microg/0.5 microl] did not influence the severity of dystonia, but antagonized the antidystonic effect of baclofen. For receptor autoradiographic studies, [H3]-CGP 54626 ([S-(R*,R*)]-[3-[[1-(3,4-Dichlorophenyl)ethyl]amino]-2-hydroxypropyl](cyclohexylmethyl)phosphinic acid) binding was determined in dt(sz) hamsters in comparison to non-dystonic control hamsters. [H3]-CGP 54626 binding was not altered in motor areas but in some limbic structures of dt(sz) hamsters. In view of the absence of striatal changes in GABA(B) binding, the strong antidystonic effect of baclofen after its striatal microinjection is probably related to a suppression of a pathophysiologically increased synaptic activity.
-
Social vocalizations are particularly important stimuli in an animal's auditory environment. Because of their importance, vocalizations should be strongly represented in auditory pathways. Mice commonly emit ultrasonic vocalizations with spectral content between 45 and 100 kHz. ⋯ The combinations of tones that elicit responses are the quadratic and/or cubic intermodulation distortion components that are generated by the cochlea. Thus, the intermodulation distortions in the cochlea may provide a previously overlooked mechanism for auditory processing of complex stimuli such as vocalizations. The implication of these findings is that nonlinear interactions of frequencies, possibly caused by distortions in the system, may be used to enhance the sensitivity to behaviorally important stimuli.
-
Na(+),K(+)-ATPase contributes to the asymmetrical distribution of sodium and potassium ions across the plasma membrane and to maintenance of the membrane potential in many types of cells. Alterations in this protein may play a significant role in many human neurological disorders, including epilepsy. We studied expression of the alpha3 isoform of Na(+),K(+)-ATPase in the freeze lesion (FL) microgyrus model of developmental epileptogenesis to test the hypothesis that it is downregulated following neonatal cortical injury. ⋯ A reduction in alpha3 mRNA was observed in the neuropil of FL cortical layer V up to 1610 mum from the microgyral edge. The developmental time course for expression of the alpha3 subunit between P7 and P60 was examined in naive rat cortices and results showed that there was a significant increase in alpha3 IR between P7 and P10. The significant decreases in Na(+),K(+)-ATPase in the paramicrogyral cortex may contribute to epileptogenesis.
-
The present study assessed the possible pronociceptive role of peripheral and spinal 5-HT(6) receptors in the formalin test. For this, local peripheral administration of selective 5-HT(6) receptor antagonists N-[3,5-dichloro-2-(methoxy)phenyl]-4-(methoxy)-3-(1-piperazinyl)-benzenesulphonamide (SB-399885) (0.01-1 nmol/paw) and 4-iodo-N-[4-methoxy-3-(4-methyl-1-piperazinyl)phenyl]benzene-sulfonamide hydrochloride (SB-258585) (0.001-0.1 nmol/paw) significantly reduced formalin-induced flinching. Local peripheral serotonin (5-HT) (10-100 nmol/paw) or 5-chloro-2-methyl-3-(1,2,3,6-tetrahydro-4-pyridinyl)-1H-indole hydrochloride (EMD-386088) (0.01-0.1 nmol/paw; a selective 5-HT(6) receptor agonist) augmented 0.5% formalin-induced nociceptive behavior. ⋯ The spinal pronociceptive effect of EMD-386088 (1 nmol/rat) was reduced by SB-399885 (1 nmol/rat) and SB-258585 (0.1 nmol/rat). Our results suggest that 5-HT(6) receptors play a pronociceptive role in peripheral as well as spinal sites in the rat formalin test. Thus, 5-HT(6) receptors could be a target to develop analgesic drugs.
-
A multicenter randomized clinical trial demonstrated that acute ischemic stroke patients treated with edaravone, a scavenger of hydroxyl radicals, had significant functional improvement. We tested the hypothesis that edaravone has protective effects against white matter lesions (WML) and endothelial injury, using a rat chronic hypoperfusion model. Adult Wistar rats underwent ligation of bilateral common carotid artery (LBCCA) and were divided into the edaravone group (injected once only immediately after LBCCA [n=39, ED(1)]; and injected on three consecutive days [n=39, ED(3)]), the vehicle group (n=39), and the sham group (n=15). ⋯ These results were more evident in the ED(3) group. Moreover, at day 21 after LBCCA, spatial memory but not motor function, and axonal damage were significantly improved by three-time treatment of edaravone (P<0.05). Our results indicated that 3-day treatment with edaravone provides protection against WML through endothelial protection and free radical scavenging and suggested that edaravone is potentially useful for the treatment of cognitive impairment.