Neuroscience
-
An acute brain insult such as traumatic head/brain injury, stroke, or an episode of status epilepticus can trigger epileptogenesis, which, after a latent, seizure-free period, leads to epilepsy. The discovery of effective pharmacological interventions that can prevent the development of epilepsy requires knowledge of the alterations that occur during epileptogenesis in brain regions that play a central role in the induction and expression of epilepsy. In the present study, we investigated pathological alterations in GABAergic interneurons in the rat basolateral amygdala (BLA), and the functional impact of these alterations on inhibitory synaptic transmission, on days 7 to 10 after status epilepticus induced by kainic acid. ⋯ Surviving interneurons increase their expression of GAD and the alpha1 GABA(A) receptor subunit, but this does not compensate for the interneuronal loss; the result is a dramatic reduction of tonic inhibition in the BLA circuitry. As activation of GluK1Rs by ambient levels of glutamate facilitates GABA release, the reduced level and function of these receptors may contribute to the reduction of tonic inhibitory activity. These alterations at a relatively early stage of epileptogenesis may facilitate the progress towards the development of epilepsy.
-
Recent studies have shown that in the pedunculopontine tegmental nucleus (PPT), increased neuronal activity and kainate receptor-mediated activation of intracellular protein kinase A (PKA) are important physiological and molecular steps for the generation of rapid eye movement (REM) sleep. In the present study performed on rats, phosphorylated cyclic AMP response element-binding protein (pCREB) immunostaining was used as a marker for increased intracellular PKA activation and as a reflection of increased neuronal activity. To identify whether activated cells were either cholinergic or noncholinergic, the PPT and laterodorsal tegmental nucleus (LDT) cells were immunostained for choline acetyltransferase (ChAT) in combination with pCREB or c-Fos. ⋯ These results provide evidence supporting the hypothesis that during REM sleep, the PPT cholinergic neurons are active, whereas the LC and DRN neurons are inactive. More importantly, the regression analysis indicated that pCREB activation in approximately 98% of PPT cholinergic neurons, was caused by REM sleep. Moreover the results indicate that during REM sleep, PPT intracellular PKA activation and a transcriptional cascade involving pCREB occur exclusively in the cholinergic neurons.
-
Nociceptive primary afferents have the capacity to induce a state of increased excitability in the dorsal horn neurons of the spinal cord. It is well accepted that capsaicin-sensitive C-fibers transduce noxious stimulation and acute pain and that capsaicin-insensitive A beta-fibers are responsible for touch and innocuous sensation. It has been reported that the intrathecal (i.t.) administration of prostaglandin F(2 alpha) (PGF(2 alpha)) and ATP induces mechanical allodynia via the capsaicin-insensitive primary afferent pathway. ⋯ Immunostaining of beta-galactosidase, a reporter knocked into the endogenous FP locus in FP(-/-) mice, showed that the FP receptor was co-localized with P2X(2) and P2X(3) receptors in neurons of the spinal cord. alphabeta-Methylene ATP evoked a transient or sustained [Ca(2+)](i) increase in most of the PGF(2 alpha)-responsive cells in the deeper layer of the spinal cord, and the alphabeta-methylene ATP-evoked increase was blocked by the FP receptor antagonist AL-8810 in two-thirds of the cells. Neither PGF(2 alpha) nor alphabeta-methylene ATP induced the activation of spinal microglia. The present study demonstrates that the alphabeta-methylene ATP-evoked allodynia is mediated by the FP receptor, possibly via the functional coupling between the activation of P2X(2/3) receptors on the central terminal of capsaicin-insensitive fibers and FP receptors on spinal neurons.
-
Cerebral ischemia/reperfusion injury is characterized by the development of inflammatory response, in which vascular macrophages and endogenous microglia are involved. Recent studies showed marked induction of hematopoietic prostaglandin D synthase (HPGDS) after ischemic/reperfusion injury and its localization in microglia, but the molecular mechanism(s) of HPGDS actions in cerebral ischemia is not clear. To clarify the role of HPGDS in cerebral ischemia, C57BL/6 mice and bone marrow chimera mice with cerebral ischemia/reperfusion injury were treated with (4-benzhydryloxy-(1) {3-(1H-tetrazol-5-yl)-propyl}piperidine (HQL-79), a specific inhibitor of HPGDS. ⋯ HQL-79 reduced NeuN expression in the transition area and Iba1 expression (P<0.0001) in the ischemic peri- and penumbra area, but increased COX-2 (P<0.05) and NF-kB expression (P<0.05) in ischemic penumbra and increased formation of nitrotyrosine (P<0.0001) and iNOS (P<0.0001) in the ischemic core area at 72 h and 7 days after reperfusion. In EGFP chimera mice, HQL-79 increased the migration of Iba1/EGFP-positive bone marrow-derived monocytes/macrophages, and simultaneously upregulated iNOS expression in the ischemic core area (P<0.0001), but increased intrinsic microglia/macrophages in ischemic peri-area and penumbra (P<0.0001) at 72 h and 7 days after reperfusion, suggesting involvement of monocytes/macrophages in HQL-79-induced expansion of ischemic injury. Our results demonstrated that the neuroprotective effects of HPGDS in our model are mediated by suppression of activation and infiltration of inflammatory cells.
-
The behavioral and motivational changes that result from use of abused substances depend upon activation of neuronal populations in the reward centers of the brain, located primarily in the corpus striatum in primates. To gain insight into the cellular mechanisms through which abused drugs reinforce behavior in the primate brain, changes in firing of neurons in the ventral (VStr, nucleus accumbens) and dorsal (DStr, caudate-putamen) striatum to "natural" (juice) vs. drug (i.v. cocaine) rewards were examined in four rhesus monkeys performing a visual Go-Nogo decision task. ⋯ Results show that neurons in the primate striatum encoded cocaine-rewarded trials similar to juice-rewarded trials, except for (1) increased firing on cocaine-rewarded trials, (2) prolonged activation during delivery of i.v. cocaine infusion, and (3) differential firing in ventral (VStr cells) vs. dorsal (DStr cells) striatum cocaine-rewarded trials. Reciprocal activations of antithetic subpopulations of cells during different temporal intervals within the same trial suggest a functional interaction between processes that encode drug and natural rewards in the primate brain.