Neuroscience
-
Previous research in our laboratory has shown that damage to the amygdala in neonatal rhesus monkeys profoundly alters behaviors associated with fear processing, while leaving many aspects of social development intact. Little is known, however, about the impact of neonatal lesions of the amygdala on later developing aspects of social behavior. A well-defined phenomenon in the development of young female rhesus monkeys is an intense interest in infants that is typically characterized by initiating proximity or attempting to hold them. ⋯ However, following the birth of the infants, the amygdala-lesioned females showed significantly less interest in the infants than did control or hippocampus-lesioned females. They directed fewer affiliative vocalizations and facial expressions to the mother-infant pair compared to the hippocampus-lesioned and control females. These findings suggest that neonatal damage to the amygdala, but not the hippocampus, impairs important precursors of non-human primate maternal behavior.
-
Stereotaxic atlases of the mouse brain are important in neuroscience research for targeting of specific internal brain structures during surgical operations. The effectiveness of stereotaxic surgery depends on accurate mapping of the brain structures relative to landmarks on the skull. During postnatal development in the mouse, rapid growth-related changes in the brain occur concurrently with growth of bony plates at the cranial sutures, therefore adult mouse brain atlases cannot be used to precisely guide stereotaxis in developing brains. ⋯ At present, most widely-used stereotaxic atlases of the mouse brain are based on histology, but the anatomical fidelity of ex vivo atlases to in vivo mouse brains has not been evaluated previously. To account for ex vivo tissue distortion due to fixation as well as individual variability in the brain, we developed a population-averaged in vivo magnetic resonance imaging adult mouse brain stereotaxic atlas, and a distortion-corrected DTI atlas was generated by nonlinearly warping ex vivo data to the population-averaged in vivo atlas. These atlas resources were developed and made available through a new software user-interface with the objective of improving the accuracy of targeting brain structures during stereotaxic surgery in developing and adult C57BL/6J mouse brains.
-
Neuronal discharge and local field potential (LFP) oscillations in the olfactory bulb (OB) are modulated by odorant stimulation. The LFP oscillations have been proposed as the mechanism that facilitates synchronization of OB output neurons and the representation of similar odorants. Gamma LFP oscillations depend on the OB inhibitory network and early sensory deprivation modifies this inhibitory network. ⋯ The modulation of LFP oscillations by odorants was also predominant in the deprived (53%) compared to the normal OB (17%). In contrast, a higher fraction of MT cells' discharge was locked to the gamma LFP cycle in the normal OB. These results suggest that early unilateral olfactory deprivation increases the OB sensitivity to odorants and reduce the temporal synchrony between unitary activity and gamma LFP oscillations without altering the basal neuronal discharge.
-
It is well recognized that proprioceptive afferent inputs can control the timing and pattern of locomotion. C and Adelta afferents can also affect locomotion but an unresolved issue is the identity of the subsets of these afferents that encode defined modalities. Over the last decade, the transient receptor potential (TRP) ion channels have emerged as a family of non-selective cation conductances that can label specific subsets of afferents. ⋯ Capsaicin induced an initial increase in excitability of the lumbar motor networks, while menthol or cooling caused a decrease in excitability. Capsaicin and menthol actions on CPGs involved excitatory and inhibitory glutamatergic mechanisms, respectively. These results for the first time show that dedicated pathways of somatosensation and pain identified by TRPV1 or TRPM8 can target spinal locomotor CPGs.
-
Cerebral glucose hypometabolism is common in temporal lobe epilepsy (TLE). The temporospatial evolution of these metabolic changes during epileptogenesis remains to be determined. We measured the regional normalized cerebral metabolic rate for glucose (nCMRglc) with (18)F-fluorodeoxyglucose (FDG)-small animal positron emission tomography (microPET) in animals receiving systemic pilocarpine application. ⋯ Conversely, the hippocampus and thalamus presented with persistent hypometabolism during epileptogenesis. The cerebellum and pons maintained normal glucose utilization during this process. We also found that severe glucose hypometabolism in the entorhinal cortex during the early phase was correlated with epileptogenesis, indicating the critical role of the entorhinal cortex in the early stages of TLE.