Neuroscience
-
To determine whether there are non-motor regions of cerebellum in which sizeable infarcts have little or no impact on motor control. ⋯ These findings demonstrate that cerebellar stroke does not always result in motor impairment, and they provide clinical evidence for topographic organization of motor versus nonmotor functions in the human cerebellum.
-
Unipolar brush cells (UBCs) are a class of excitatory interneuron found in the granule cell layer of the vestibulocerebellum. Mossy fibers form excitatory inputs on to the paint brush shaped dendrioles in the form of giant, glutamatergic synapses, activation of which results in prolonged bursts of action potentials in the postsynaptic UBC. The axons of UBCs themselves form mossy fiber contacts with other UBCs and granule cells, forming an excitatory, intrinsic cerebellar network that has the capacity to synchronize and amplify mossy fiber inputs to potentially large populations of granule cells. ⋯ LVA calcium currents are mediated by T-type calcium channels and they are associated with calcium increases in the dendrites and to a lesser extent the cell soma. HVA currents, mediated by L-type calcium channels, are slowly inactivating and they produce larger overall increases in intracellular calcium but with a similar distribution pattern. We review these observations alongside several recent papers that examine how intrinsic membrane properties influence UBCs firing patterns and we discuss how UBC signaling may affect downstream cerebellar processing.
-
Internal models are a key feature of most modern theories of motor control. Yet, it has been challenging to localize internal models in the brain, or to demonstrate that they are more than a metaphor. In the present review, I consider a large body of data on the cerebellar floccular complex, asking whether floccular output has features that would be expected of the output from internal models. ⋯ If we consider the brainstem circuits and eyeball as a more broadly conceived "oculomotor plant," then the output from the floccular complex could be the manifestation of an inverse model of "plant" dynamics. (3) Floccular output reflects an internal model of the physics of the orbit where head and eye motion sum to produce gaze motion. The effects of learning on floccular output suggest that it is modeling the interaction of the visually-guided and vestibular-driven components of eye and gaze motion. Perhaps the insights from studying oculomotor control provide groundwork to guide the analysis of internal models for a wide variety of cerebellar behaviors.