Neuroscience
-
Phosphatase and actin regulators (Phactrs) are a novel family of proteins expressed in the brain, and they exhibit both strong modulatory activity of protein phosphatase 1 and actin-binding activity. Phactrs are comprised of four family members (Phactr1-4), but their detailed expression patterns during embryonic and postnatal development are not well understood. ⋯ Following traumatic brain injury which promotes neurogenesis in the neurogenic region and gliogenesis in the injury penumbra, the mRNA expression of phactr2 and 4 was progressively increased in the injury penumbra, and phactr4 mRNA and protein induction was observed in reactive astrocytes. These differential expression patterns of phactrs imply specific functions for each protein during development, and the importance of Phactr4 in the reactive gliosis following brain injury.
-
The caudal division of the trigeminal spinal nucleus (Sp5C) is an important brainstem relay station of orofacial pain transmission. The aim of the present study was to examine the effect of cortical electrical stimulation on nociceptive responses in Sp5C neurons. Extracellular recordings were performed in the Sp5C nucleus by tungsten microelectrodes in urethane-anesthetized Sprague-Dawley rats. ⋯ Inhibitory cortical effects were mediated by the activation of GABAergic and glycinergic neurons because they were blocked by bicuculline or strychnine. The S1 and S2 cortical stimulation also inhibited Sp5C neurons in animals with constriction of the infraorbital nerve. Consequently, the corticofugal projection from S1 and S2 cortical areas modulates nociceptive responses of Sp5C neurons and may control the transmission of nociceptive sensory stimulus.
-
Reactive oxygen species (ROS) are major exacerbation factor in acute ischemic stroke, and thrombolytic agent tissue plasminogen activator (tPA) may worsen motor function and cerebral infarcts. The platinum nanoparticle (nPt) is a novel ROS scavenger, and thus we examined the clinical and neuroprotective effects of nPt in ischemic mouse brains. Mice were subjected to transient middle cerebral artery occlusion (tMCAO) for 60 min and divided into the following four groups by intravenous administration upon reperfusion, vehicle, tPA, tPA+nPt, and nPt. ⋯ All these results became pronounced with tPA administration, and were greatly reduced by nPt. The present study demonstrates that nPt treatment ameliorates neurological function and brain damage in acute cerebral infarction with neuroprotective effect on NVU and inactivation of MMP-9. The strong reduction of ROS production by nPt could account for these remarkable neurological and neuroprotective effects against ischemic stroke.
-
The spontaneously epileptic rat (SER) is a double mutant (zi/zi, tm/tm) which begins to exhibit tonic convulsions and absence seizures after 6 weeks of age, and repetitive tonic seizures over time induce sclerosis-like changes in SER hippocampus with high brain-derived neurotrophic factor (BDNF) expression. Levetiracetam, which binds to synaptic vesicle protein 2A (SV2A), inhibited both tonic convulsions and absence seizures in SERs. We studied SER brains histologically and immunohistochemically after verification by electroencephalography (EEG), as SERs exhibit seizure-related alterations in the cerebral cortex and hippocampus. ⋯ The extent of low SV2A expression/distribution in SERs was particularly remarkable in the frontal (51% of control) and entorhinal cortices (47%). Lower synaptotagmin-1 expression (vs Wistar rats) was located in the frontal (31%), piriform (13%) and entorhinal (39%) cortices, and IML of the DG (38%) in SER. Focal low distribution of synaptotagmin-1 accompanying low SV2A expression may contribute to epileptogenesis and seizure propagation in SER.
-
Forty-five years ago Shik and colleagues were the first to demonstrate that electrical stimulation of the dorsal pontine reticular formation induced fictive locomotion in decerebrate cats. This supraspinal motor site was subsequently termed the "mesencephalic locomotor region (MLR)". Cholinergic neurons of the pedunculopontine tegmental nucleus (PPT) have been suggested to form, or at least comprise in part, the neuroanatomical basis for the MLR, but direct evidence is lacking. ⋯ Unit recordings from these reticulospinal neurons in freely behaving animals revealed that the preponderance of neurons fired in relation to motor behaviors and that some of these neurons were also active during rapid eye movement sleep. By contrast, non-reticulospinal neurons, which likely included cholinergic neurons, did not exhibit firing activity in relation to motor behaviors. In summary, the present study provides neuroanatomical and electrophysiological evidence that non-cholinergic, pontine reticulospinal neurons may constitute the major component of the long-sought neuroanatomic MLR in mammals.