Neuroscience
-
Pain has sensory-discriminative and emotional-affective dimensions. Recent studies show that the affective component can be assessed with a conditioned place avoidance (CPA) test. We hypothesized that systemic morphine before a post-conditioning test would more potently attenuate the affective aspect compared to the sensory component and that [d-Ala2-N-Me-Phe4, Gly-ol5]-enkephalin (DAMGO), a μ-selective opioid receptor agonist, injected into the central nucleus of the amygdala (CeA) would reduce established CPA. ⋯ I.t. morphine did not inhibit the display of CPA but significantly increased PWL, suppressing hyperalgesia (P<0.05). Intra-CeA DAMGO significantly inhibited the display of CPA compared to saline (P<0.05) but had no effect on PWL. The data demonstrate that morphine attenuates the affective component more powerfully than it does the sensory and suggests that the sensory and the emotional-affective dimensions are underpinned by different mechanisms.
-
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. ⋯ Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder.
-
Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over 40 years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). ⋯ These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labeling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20-25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contains Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks.
-
Autism is a severe neurodevelopmental disorder characterized by impairments in social interaction, deficits in verbal and non-verbal communication, and repetitive behavior and restricted interests. Emerging evidence suggests that aberrant neuroimmune responses may contribute to phenotypic deficits and could be appropriate targets for pharmacologic intervention. ⋯ In this review, a possible pathological mechanism behind autism is proposed, which suggests that IL-6 elevation in the brain, caused by the activated glia and/or maternal immune activation, could be an important inflammatory cytokine response involved in the mediation of autism-like behaviors through impairments of neuroanatomical structures and neuronal plasticity. Further studies to investigate whether IL-6 could be used for therapeutic interventions in autism would be of great significance.
-
In recent years, both major depression and antidepressant therapy have been linked to adult hippocampal neurogenesis. The hippocampus is not a homogeneous brain area, and a converging body of evidence indicates a functional dissociation along its septo-temporal axis, the dorsal part being involved more in learning/memory and spatial navigation, while the ventral sub-region is linked more to emotional behavior and regulation of the neuroendocrine stress axis. Research has therefore been conducted in an attempt to relate effects of models of depression and of antidepressant therapies to adult neurogenesis along the septo-temporal axis of the hippocampus. ⋯ Some recently introduced clinical compounds (e.g., agomelatine) or putative antidepressants have a specific action on the ventral sub-region, indicating that an action restricted to this part of the brain may be sufficient to achieve remission. Finally, non-pharmacological manipulations that are also endowed with antidepressant effects, such as environmental enrichment or physical exercise, also act on both subdivisions, although some studies pointed to specificity of dorsal neurogenesis. The different treatments, acting either on the dorsal or on the ventral sub-regions, could promote recovery by improving either ventral- or dorsal-related functions, both contributing in a different way to treatment efficacy.