Neuroscience
-
Early blindness results in occipital cortex neurons responding to a wide range of auditory and tactile stimuli. These changes in tuning properties are accompanied by an extensive reorganization of the occipital cortex that includes alterations in anatomical structure, neurochemical and metabolic pathways. ⋯ Here, using (1)H magnetic resonance spectroscopy in nine early blind and normally sighted subjects, we find that early blindness is associated with higher levels of creatine, choline and myo-Inositol and indications of lower levels of GABA within the occipital cortex. These results suggest that the cross-modal responses associated with early blindness may, at least in part, be driven by changes within occipital biochemical pathways.
-
Alpha7 nicotinic acetylcholine receptors (α7nAChRs) mediate nicotine-induced burst-firing of dopamine neurons in the ventral tegmental area (VTA), a limbic brain region critically involved in reward and in dopamine D2 receptor (D2R)-related cortical dysfunctions associated with psychosis. The known presence of α7nAChRs and Gi-coupled D2Rs in dopamine neurons of the VTA suggests that these receptors are targeted to at least some of the same neurons in this brain region. To test this hypothesis, we used electron microscopic immunolabeling of antisera against peptide sequences of α7nACh and D2 receptors in the mouse VTA. ⋯ Of 160 D2R-labeled terminals, 81.2% were presynaptic to dendrites that expressed α7nAChR alone or together with the D2R. Numerous glial processes inclusive of those enveloping either excitatory- or inhibitory-type synapses also contained single labeling for D2R (n=152) and α7nAChR (n=561). These results suggest that classic antipsychotic drugs, all of which block the D2R, may facilitate α7nAChR-mediated burst-firing by elimination of D2R-dependent inhibition in neurons expressing both receptors as well as by indirect pre-synaptic and glial mechanisms.
-
The rostral nucleus of the solitary tract (rNST) receives orosensory information from taste bud cells in the tongue and palate via cranial nerves VII and IX. These nerves enter the brainstem, form the solitary tract (ST) and synapse with neurons in the rNST, which then relay incoming sensory information to other brain areas to process external gustatory stimuli. Factors that direct or regulate the trajectory of the developing ST are largely unknown. ⋯ Expression levels of Npn-2 also declined through E18, in contrast to the expression levels of its binding partner, Sema-3F, which increased during this time period. For the first time, the time course and particular molecular components involved in development of the ST have been identified. These results indicate that the neuropilin and semaphorin families of axon guidance molecules are potential molecular participants in ST formation.
-
Regular exercise promotes brain function via a wide range of adaptive responses, including the increased expression of antioxidant and oxidative DNA damage-repairing systems. Accumulation of oxidized DNA base lesions and strand breaks is etiologically linked to for example aging processes and age-associated diseases. Here we tested whether exercise training has an impact on brain function, extent of neurogenesis, and expression of 8-oxoguanine DNA glycosylase-1 (Ogg1) and SIRT1 (silent mating-type information regulation 2 homolog). ⋯ Furthermore, exercise increased SIRT1 expression and decreased acetylated Ogg1 (AcOgg1) levels, a post-translational modification important for efficient repair of 8-oxo-7,8-dihydroguanine (8-oxoG). Our data on cell cultures revealed that nicotinamide, a SIRT1-specific inhibitor, caused the greatest increase in the acetylation of Ogg1, a finding further supported by our other observations that silencing SIRT1 also markedly increased the levels of AcOgg1. These findings imply that high-running capacity is associated with increased hippocampal function, and SIRT1 level/activity and inversely correlates with AcOgg1 levels and thereby the repair of genomic 8-oxoG.
-
The medial perforant path (MPP) and lateral perforant path (LPP) inputs to the hippocampal dentate gyrus form two distinct laminar inputs onto the middle and distal aspects of granule cell dendrites. Previous evidence indicated that paired stimuli reliably produced paired-pulse depression (PPD) in the MPP and paired-pulse facilitation (PPF) in the LPP. Despite this, several years of practical experience in our laboratory questioned the utility of using paired-pulse administration to reliably differentiate the MPP and LPP in vitro. ⋯ PPD was more evident in whole cell voltage clamp recordings but nonetheless was not completely diagnostic as PPD was occasionally observed with LPP stimulation as well. We found the MPP and LPP could be reliably identified using conventional microscopy with hippocampal slices, and that they could be distinguished through the analysis of evoked waveform kinetics. This work refines our knowledge of electrophysiological differences between MPP and LPP projections and will help to facilitate the selective activation of these pathways.