Neuroscience
-
Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. ⋯ TrkA receptor agonist indicated that NGFacted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr's effect on DRG neurons. Overall, NGF/TrkA signaling or p75 receptor inhibition protects somatic sensory neurons exposed to Vpr, thus laying the groundwork for potential therapeutic options for HIV/AIDS patients suffering from DSP.
-
A clear link exists between iron deficiency (ID) and nigrostriatal dopamine malfunction. This link appears to play an important role in at least restless legs syndrome (RLS) if not several other neurological diseases. Yet, the underlying mechanisms remain unclear. ⋯ These were stromal cell-derived factor 1 (Cxcl12, or SDF-1), a ferritin regulator and potent dopamine neuromodulator, and hemoglobin, beta adult chain 1 (Hbb-b1), a gene recently shown to play a functional role in dopaminergic neurons. The extent of up-regulation of these genes varied by strain. This work not only demonstrates a wide genetic variation in the transcriptional response to ID in the brain, but also reveals two novel biochemical pathways by which iron may potentially alter dopamine function.
-
The regenerative capacity of the peripheral nervous system is largely related to Schwann cells undergoing proliferation and migration after injury and forming growth-supporting substrates for severed axons. Novel data show that fibroblasts to a certain extent regulate the pro-regenerative behavior of Schwann cells. In the setting of peripheral nerve injury, the fibroblasts that form the epineurium come into close contact with both Schwann cells and peripheral axons, but the potential influence on these latter two cell types has not been studied yet. ⋯ These same read-out parameters were assayed in a condition where epineurial fibroblasts were subjected to stretch-cell-stress, a mechanical stressor that plays an important role in traumatic peripheral nerve injuries. Stretch-cell-stress of epineurial fibroblasts did not further change the positive effects of conditioned media on Schwann cell migration and neurite outgrowth. From these data we conclude that an as yet unknown pro-regenerative role can be attributed to epineurial fibroblasts, implying that such cells may affect the outcome of severe peripheral nerve injury.
-
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. ⋯ Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder.
-
Axon terminals forming mixed chemical/electrical synapses in the lateral vestibular nucleus of rat were described over 40 years ago. Because gap junctions formed by connexins are the morphological correlate of electrical synapses, and with demonstrations of widespread expression of the gap junction protein connexin36 (Cx36) in neurons, we investigated the distribution and cellular localization of electrical synapses in the adult and developing rodent vestibular nuclear complex, using immunofluorescence detection of Cx36 as a marker for these synapses. In addition, we examined Cx36 localization in relation to that of the nerve terminal marker vesicular glutamate transporter-1 (vglut-1). ⋯ These terminals and their associated Cx36-puncta were substantially depleted after labyrinthectomy. Developmentally, labeling for Cx36 was already present in the vestibular nuclei at postnatal day 5, where it was only partially co-localized with vglut-1, and did not become fully associated with vglut-1-positive terminals until postnatal day 20-25. The results show that vglut-1-positive primary afferent nerve terminals form mixed synapses throughout the vestibular nuclear complex, that the gap junction component of these synapses contains Cx36, that multiple Cx36-containing gap junctions are associated with individual vglut-1 terminals and that the development of these mixed synapses is protracted over several postnatal weeks.