Neuroscience
-
Leptin and somatostatin (SRIF) have opposite effects on food seeking and ingestive behaviors, functions partially regulated by the frontoparietal cortex and hippocampus. Although it is known that the acute suppression of food intake mediated by leptin decreases with time, the counter-regulatory mechanisms remain unclear. Our aims were to analyze the effect of acute central leptin infusion on the SRIF receptor-effector system in these areas and the implication of related intracellular signaling mechanisms in this response. ⋯ These changes in sst2 mRNA levels were concomitant with increased activation of the insulin signaling, c-Jun and cyclic AMP response element-binding protein (CREB); however, activation of signal transducer and activator of transcription 3 was reduced in the cortex and unchanged in the hippocampus and suppressor of cytokine signaling 3 remained unchanged in these areas. In addition, the leptin antagonist L39A/D40A/F41A blocked the leptin-induced changes in SRIF receptors, leptin signaling and CREB activation. In conclusion, increased activation of insulin signaling after leptin infusion is related to acute up-regulation of the SRIF receptor-effector system that may antagonize short-term leptin actions in the rat brain.
-
Hemorrhagic stroke, including intracerebral hemorrhage (ICH), is a devastating subtype of stroke; yet, effective clinical treatment is very limited. Accumulating evidence has shown that mild to moderate hypothermia is a promising intervention for ischemic stroke and ICH. Current physical cooling methods, however, are less efficient and often impractical for acute ICH patients. ⋯ All together, these data suggest that systemic injection of HPI-201 is an effective hypothermic strategy that protects the brain from ICH injury with a wide therapeutic window. The protective effect of this PIH therapy is partially mediated through the alleviation of apoptosis and neurovascular damage. We suggest that pharmacological hypothermia using the newly developed neurotensin analogs is a promising therapeutic treatment for ICH.
-
The voluntary control of respiration is used as a common means to regulate pain and emotions and is fundamental to various relaxation and meditation techniques. The aim of the present study was to examine how breathing frequency and phase affect pain perception, spinal nociceptive activity (RIII-reflex) and brain activity (scalp somatosensory-evoked potentials - SEP's). In 20 healthy volunteers, painful electric shocks individually adjusted to 120% of the RIII-reflex threshold were delivered to the sural nerve near the end of inspiration or expiration phases, during three cued-breathing conditions: (1) slow breathing (0.1 Hz) with slow (4s) inspiration (0.1Hz-SlowIns), (2) slow breathing (0.1 Hz) with fast (2s) inspiration (0.1 Hz-FastIns), and (3) normal breathing (0.2 Hz) with fast (2s) inspiration (0.2 Hz). ⋯ Slow breathing also increased the amplitude of respiratory sinus arrhythmia (RSA), although these changes were not significantly associated with changes in pain responses. In conclusion, this study shows that pain and pain-related brain activity may be reduced during inspiration but these changes are dissociated from spinal nociceptive transmission. The small amplitude of these effects suggests that factors other than respiration contribute to the analgesic effects of relaxation and meditation techniques.
-
Distal sensory polyneuropathy (DSP) with associated neuropathic pain is the most common neurological disorder affecting patients with human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). Viral protein R (Vpr) is a neurotoxic protein encoded by HIV-1 and secreted by infected macrophages. Vpr reduces neuronal viability, increases cytosolic calcium and membrane excitability of cultured dorsal root ganglion (DRG) sensory neurons, and is associated with mechanical allodynia in vivo. ⋯ TrkA receptor agonist indicated that NGFacted through the TrkA receptor to block the Vpr-mediated decrease in axon outgrowth in neonatal and adult rat and fetal human DRG neurons (p<0.05). Similarly, inhibiting the lower affinity NGF receptor, p75, blocked Vpr's effect on DRG neurons. Overall, NGF/TrkA signaling or p75 receptor inhibition protects somatic sensory neurons exposed to Vpr, thus laying the groundwork for potential therapeutic options for HIV/AIDS patients suffering from DSP.
-
The aim of this study was to analyze the effects of chronic oxidative stress on mitochondrial function and its relationship to progressive neurodegeneration in the hippocampus of rats chronically exposed to ozone. Animals were exposed to 0.25 ppm ozone for 7, 15, 30, or 60 days. Each group was tested for (1) protein oxidation and, manganese superoxide dismutase (Mn-SOD), glutathione peroxidase (GPx) and succinate dehydrogenase (SDH) activity using spectrophotometric techniques, (2) oxygen consumption, (3) cytochrome c, inducible nitric oxide synthase (iNOS), peroxisome proliferator-activated receptor γ Co-activator 1α (PGC-1α), B-cell lymphoma (Bcl-2), and Bax expression using Western blotting, (4) histology using hematoxylin and eosin staining, and (5) mitochondrial structure using electron microscopy. ⋯ The expression of PGC-1α was decreased after 15, 30, and 60 days compared to the earlier time Bcl-2 was increased at 60 days compared to earlier time points, and Bax was increased after 30 and 60 days of exposure compared to earlier time points. We observed cellular damage, and mitochondrial swelling with a loss of mitochondrial cristae after 60 days of exposure. These changes suggest that low doses of ozone caused mitochondrial abnormalities that may lead to cell damage.