Neuroscience
-
Aquaporin-1 (AQP1) is the principle water channel in the peripheral nervous system (PNS) and is specifically localized to Schwann cells in the PNS. However, the pathophysiological role of AQP1 in peripheral nerves is poorly understood. Here, we utilized RNA interference by lentiviral transduction to specifically down-regulate AQP1 expression and a lentiviral overexpression protocol to up-regulate AQP1 expression, in primary Schwann cell cultures. ⋯ We demonstrated that AQP1 expression was induced within 8h following hypoxia injury in vitro, and that AQP1 knockdown (KD) caused the cells to resist edema following hypoxia. Finally, we investigated the hypoxic regulation of the AQP1 gene, as well as the involvement of Hypoxia-inducible factor-1α (HIF-1α) in AQP1 modulation and we found that KD of HIF-1α decreased hypoxia-dependent induction of endogenous AQP1 expression at both the mRNA and protein levels. Taken together, these results indicate that (1) AQP1 is an important factor responsible for the fast water transport of cultured Schwann cells and is involved in cell plasticity; (2) AQP1 alterations may be a primary factor in hypoxia-induced peripheral nerve edema; (3) HIF-1α participates in the hypoxic induction of the AQP1 gene; (4) AQP1 inhibition might provide a new therapeutic alternative for the treatment of some forms of peripheral nerve edema.
-
Neurons at higher stations of each sensory system are responsive to feature combinations not present at lower levels. As a result, the activity of these neurons becomes less redundant than lower levels. We recorded responses to speech sounds from the inferior colliculus and the primary auditory cortex neurons of rats, and tested the hypothesis that primary auditory cortex neurons are more sensitive to combinations of multiple acoustic parameters compared to inferior colliculus neurons. ⋯ Our results demonstrate that inferior colliculus responses are spatially arranged and primarily determined by the spectral energy and the fundamental frequency of speech, whereas primary auditory cortex neurons generate widely distributed responses to multiple acoustic parameters, and are not strongly influenced by the fundamental frequency of speech. We found no evidence that inferior colliculus or primary auditory cortex was specialized for speech features such as voice onset time or formants. The greater diversity of responses in primary auditory cortex compared to inferior colliculus may help explain how the auditory system can identify a wide range of speech sounds across a wide range of conditions without relying on any single acoustic cue.
-
Brain regions influenced by the lateral parabrachial nucleus in angiotensin II-induced water intake.
This study examined which brain regions are influenced by an inhibitory lateral parabrachial nucleus (LPBN) mechanism that affects water intake. Controls and rats with bilateral LPBN lesions were administered angiotensin II (AngII) (0.5mg/kg subcutaneous - SC), drinking responses measured, and brains processed for Fos-immunohistochemistry. A separate group of LPBN-lesioned and non-lesioned animals were denied water for 90 min prior to perfusion to remove any confounding factor of water intake. ⋯ In LPBN-lesioned rats that did not drink, greater numbers of activated neurons were detected in the PVN (p<0.001), SON (p<0.01), MnPO, nucleus of the solitary tract (NTS) and area postrema (p<0.05) in response to SC AngII, compared with non-lesioned rats. These data suggest that the direct effects of LPBN lesions caused an increase in AngII-induced water intake and in rats that did not drink an increase in Fos expression, while indirect secondary effects of LPBN lesions caused a reduction in Fos expression possibly related to excessive ingestion of water. An inhibitory mechanism, likely related to arterial baroreceptor stimulation, relayed by neurons located in the LPBN influences the responses of the MnPO, PVN and SON to increases in peripheral AngII.
-
Activation of glutamate receptors within the ventral tegmental area (VTA) stimulates extrasynaptic (basal) dopamine release in terminal regions, including the nucleus accumbens (NAc). Hindbrain inputs from the laterodorsal tegmental nucleus (LDT) are critical for elicitation of phasic VTA dopamine cell activity and consequent transient dopamine release. This study investigated the role of VTA ionotropic glutamate receptor (iGluR) stimulation on both basal and LDT electrical stimulation-evoked dopamine efflux in the NAc using in vivo chronoamperometry and fixed potential amperometry in combination with stearate-graphite paste and carbon fiber electrodes, respectively. ⋯ Taken together, these data reveal that hyperstimulation of basal dopamine transmission can stunt hindbrain burst-like stimulation-evoked dopamine efflux. Inhibitory autoreceptor mechanisms within the VTA help to partially recover the magnitude of phasic dopamine efflux, highlighting the importance of both iGluRs and D2 autoreceptors in maintaining the functional balance of tonic and phasic dopamine neurotransmission. Dysregulation of this balance may have important implications for disorders of dopamine dysregulation such as attention deficit hyperactivity disorder.
-
Botulinum neurotoxins (BoNTs) may affect the excitability of brain circuits by inhibiting neurotransmitter release at central synapses. There is evidence that local delivery of BoNT serotypes A and E, which target SNAP-25, a component of the release machinery specific to excitatory synapses, can inhibit seizure generation. BoNT serotype B (BoNT/B) targets VAMP2, which is expressed in both excitatory and inhibitory terminals. ⋯ BoNT/B-treated animals also exhibited tactile hyperresponsivity in comparison with vehicle-treated controls. This is the first demonstration that BoNT/B causes a delayed proconvulsant action when infused into the hippocampus. Local infusion of BoNT/B could be useful as a focal epilepsy model.