Neuroscience
-
Age-related hearing loss (presbycusis) is caused mainly by the hypofunction of the inner ear, but recent findings point also toward a central component of presbycusis. We used MR morphometry and diffusion tensor imaging (DTI) with a 3T MR system with the aim to study the state of the central auditory system in a group of elderly subjects (>65years) with mild presbycusis, in a group of elderly subjects with expressed presbycusis and in young controls. Cortical reconstruction, volumetric segmentation and auditory pathway tractography were performed. ⋯ A trend toward a decrease of L1 on the left side, which was more pronounced in the elderly groups, was observed. The effect of hearing loss was present in subjects with expressed presbycusis as a trend toward an increase of the radial vectors (L2L3) in the white matter under Heschl's gyrus. These results suggest that in addition to peripheral changes, changes in the central part of the auditory system in elderly subjects are also present; however, the extent of hearing loss does not play a significant role in the central changes.
-
The study describes for the first time the colocalization pattern of calbindin (CB) and cocaine- and amphetamine-regulated transcript (CART) in the mammillary body (MB) and anterior thalamic nuclei (ATN) - structures connected in a topographically organized manner by the mammillothalamic tract (mtt). Immunohistochemical study was performed on fetal (E40, E50, E60), newborn (P0) and postnatal (P20, P80) brains of the guinea pig, but the coexistence pattern of the substances was invariable throughout the examined developmental stages. CB and CART colocalized in the perikarya of the lateral part of the medial mammillary nucleus (MMl), whereas in its medial part (MMm) only CB was detected. ⋯ In the ventral part of AV, CB and CART colocalized vastly in the neuropil. The lateral mammillary nucleus and anterodorsal thalamic nucleus were virtually devoid of CB- and CART-positive structures. Based on the known connections between the MB and ATN, we conclude that the studied substances may cooperate in the MMl-AV part of the axis and CB plays a significant role in the MMm-AM part.
-
The suprachiasmatic nucleus (SCN) of the mammalian hypothalamus contains a circadian clock for timing of diverse neuronal, endocrine, and behavioral rhythms, such as the cycle of sleep and wakefulness. Using extracellular single unit recordings, we have determined, for the first time, the discharge activity of individual SCN neurons during the complete wake-sleep cycle in non-anesthetized, head restrained mice. SCN neurons (n=79) were divided into three types according to their regular (type I; n=38) or irregular (type II; n=19) discharge activity throughout the wake-sleep cycle or their quiescent activity during waking and irregular discharge activity during sleep (type III; n=22). ⋯ The majority of type I and II neurons tested showed an increase in discharge rate following application of light to the animal's eyes. Of the 289 extra-SCN neurons recorded, those displaying sleep-active discharge profiles were mainly located dorsal to the SCN, whereas those displaying wake-active discharge profiles were mainly located lateral or dorsolateral to the SCN. This study shows heterogeneity of mouse SCN and surrounding anterior hypothalamic neurons and suggests differences in their topographic organization and roles in mammalian circadian rhythms and the regulation of sleep and wakefulness.
-
Granulocyte-colony stimulating factor (G-CSF) has protective effects on many neurological diseases. Here, we aimed to test G-CSF's effects on perihematomal tissue injuries following intracerebral hemorrhage (ICH) and examine whether the effects were functionally dependent on vascular endothelial growth factor (VEGF) and aquaporin-4 (AQP4). We detected the expression of perihematomal VEGF, VEGF receptors (VEGFRs) and AQP4 at 1, 3 and 7days after ICH. ⋯ G-CSF up-regulated phosphorylation of extracellular signal-regulated kinase (ERK) and signal transducer and activator of transcription 3 (STAT3) as well as VEGF and AQP4 proteins in cultured astrocytes. The latter was inhibited by ERK and STAT3 inhibitors respectively. Our data suggest the protective effects of G-CSF on perihematomal tissue injuries after ICH are highly associated with the increased levels of VEGF and AQP4, possibly act through C-Jun amino-terminal kinase and ERK pathways respectively.
-
To maintain perception of the world around us during body motion, the brain must update the spatial presentation of visual stimuli, known as space updating. Previous studies have demonstrated that vestibular signals contribute to space updating. Nonetheless, when being passively rotated in the dark, the ability to keep track of a memorized earth-fixed target (EFT) involves learning mechanism(s). ⋯ Generalization of learning implies that participants do not adopt cognitive strategies to improve their performance during training. We argue that the brain learned to use vestibular signals for space updating. Generalization of learning while being rotated in the opposite direction implies that some parts of the neural networks involved in space updating is shared between trained and untrained direction.