Neuroscience
-
Despite the enormous public health impact of Alzheimer's disease (AD), no disease-modifying treatment has yet been proven to be efficacious in humans. A rate-limiting step in the discovery of potential therapies for humans is the absence of efficient non-invasive methods of evaluating drugs in animal models of disease. Magnetic resonance spectroscopy (MRS) provides a non-invasive way to evaluate the animals at baseline, at the end of treatment, and serially to better understand treatment effects. ⋯ Additionally, a dose-dependent effect was observed with one of the treatments for mIns. MRS appears to be a valid in vivo measure of anti-Aβ therapeutic efficacy in pre-clinical studies. Because it is noninvasive, and can detect treatment effects, use of MRS-based endpoints could substantially accelerate drug discovery.
-
Rodents exhibit leptin resistance and high levels of prolactin/placental lactogens during pregnancy. A crosstalk between prolactin and leptin signaling has been proposed as a possible mechanism to explain the changes in energy balance during gestation. However, it remains unclear if specific neuronal populations co-express leptin and prolactin receptors. ⋯ Late pregnant mice exhibited a reduced leptin response in the MPA and NTS when compared with nulliparous mice; however, a normal leptin response was observed in other brain nuclei. In conclusion, our findings shed light on how the brain integrates the information conveyed by leptin and prolactin. Our results corroborate the hypothesis that high levels of prolactin or placental lactogens during pregnancy may directly interfere with LepR signaling, possibly predisposing to leptin resistance.
-
Recent neuroscientific studies have identified activity changes in an extensive cerebral network consisting of medial prefrontal cortex, precuneus, temporo-parietal junction, and temporal pole during the perception and identification of self- and other-generated stimuli. Because this network is supposed to be engaged in tasks which require agent identification, it has been labeled the evaluation network (e-network). The present study used self- versus other-generated movement sounds (long jumps) and electroencephalography (EEG) in order to unravel the neural dynamics of agent identification for complex auditory information. ⋯ Three-dimensional sLORETA source localization analysis revealed cortical activations in brain regions mostly associated with the e-network, especially in the medial prefrontal cortex (bilaterally in the alpha-1-band and right-lateralized in the gamma-band) and the temporo-parietal junction (right hemisphere in the alpha-1-band). Taken together, the findings are partly consistent with previous functional neuroimaging studies investigating unimodal visual or multimodal agent identification tasks (cf. e-network) and extent them to the auditory domain. Cortical activations in brain regions of the e-network seem to have functional relevance, especially the significantly higher cortical activation in the right medial prefrontal cortex.
-
Neuronal loss is the most common and critical feature of a spectrum of brain traumas and neurodegenerative disorders such as Alzheimer's disease (AD). The capacity to generate new neurons in the central nervous system diminishes early during brain development and is restricted mainly to two brain areas in the mature brain: subventricular zone and subgranular zone. Extensive research on the impact of brain injury on endogenous neurogenesis and cognition has been conducted primarily using young animals, when neurogenesis is most active. ⋯ Our findings demonstrate that aged CaM/Tet-DTA mice that sustain severe neuronal loss exhibit an upregulation of endogenous neurogenesis. However, despite this significant upregulation, neurogenesis alone is not able to mitigate the cognitive deficits observed. Our studies suggest that the aged brain has the capacity to stimulate neurogenesis post-injury; however, multiple therapeutic approaches, including upregulation of endogenous neurogenesis, will be necessary to recover brain function after severe neurodegeneration.
-
Sensory neurons mediate diabetic peripheral neuropathy. Using a mouse model of diabetic peripheral neuropathy (BKS. Cg-m+/+Lepr(db)/J (db/db) mice) and cultured dorsal root ganglion (DRG) neurons, the present study showed that hyperglycemia downregulated miR-146a expression and elevated interleukin-1 receptor-activated kinase (IRAK1) and tumor necrosis factor receptor-associated factor 6 (TRAF6) levels in DRG neurons. ⋯ Treatment of diabetic peripheral neuropathy with sildenafil, a phosphodiesterase type 5 inhibitor, augmented miR-146a expression and decreased levels of IRAK1 and TRAF6 in the DRG neurons. In vitro, blockage of miR-146a in DRG neurons abolished the effect of sildenafil on DRG neuron protection and downregulation of IRAK1 and TRAF6 proteins under hyperglycemia. Our data provide the first evidence showing that miR-146a plays an important role in mediating DRG neuron apoptosis under hyperglycemic conditions.