Neuroscience
-
In this study, we investigated the effect of neonatal olfactory bulbectomy (nOBX) on behavioral paradigms related to olfaction such as exploratory behavior, locomotor activity in a novel environment and social interaction. We also studied the effect of nOBX on the activity of the N-methyl-d-aspartate (NMDA) subtype of glutamate receptors during development. The behavioral effects of nOBX (postnatal day 7, PD7) were investigated in pre- (PD30) and post-pubertal (PD60) Wistar rats. ⋯ Interestingly, pre-pubertal rats showed a significant increase in the [(125)I]MK-801 binding in the piriform cortex, dorsal hippocampus, inner and outer layers of the frontal cortex and outer layer of the cingulate cortex. At post-pubertal age, no significant differences in [(125)I]MK-801 binding were observed between groups at any of the brain regions analyzed. These results suggest that nOBX produces pre-pubertal behavioral disturbances and NMDA receptor changes that are transitory with recovery of olfaction early in adulthood.
-
Sensory input from the temporomandibular joint (TMJ) to neurons in superficial laminae at the spinomedullary (Vc/C1-2) region is strongly influenced by estrogen status. This study determined if GABAergic mechanisms play a role in estrogen modulation of TMJ nociceptive processing in ovariectomized female rats treated with high- (HE) or low-dose (LE) estradiol (E2) for 2days. Superficial laminae neurons were activated by ATP (1mM) injections into the joint space. ⋯ Protein levels of GABAA receptor β3 isoform at the Vc/C1-2 region were similar for HE and LE rats. These results suggest that GABAergic mechanisms contribute significantly to background discharge rates and TMJ-evoked input to superficial laminae neurons at the Vc/C1-2 region. Estrogen status may gate the magnitude of GABAergic influence on TMJ neurons at the earliest stages of nociceptive processing at the spinomedullary region.
-
Physical exercises and motor skill learning have been shown to induce changes in regional brain morphology, this has been demonstrated for various activities and tasks. Also individuals with special skills show differences in regional brain morphology. This has been indicated for professional musicians, London taxi drivers, as well as for athletes like dancers, golfers and judokas. ⋯ In addition, endurance athletes showed significantly higher GM volume in the medial temporal lobe (MTL), specifically in the hippocampus and parahippocampal gyrus, which was not seen in the martial arts group. Our data suggest that high-performance sports are associated with changes in regional brain morphology in areas implicated in motor planning and motor learning. In addition high-level endurance sports seem to affect MTL structures, areas that have previously been shown to be modulated by aerobic exercise.
-
Not all the mechanisms by which subthalamic nucleus deep brain stimulation (STN-DBS) alleviates parkinsonian symptoms have been clarified as yet. The levels of striatal monoamine and the subthalamic beta activity might contribute to its efficacy. However, their direct relationship is unclear. We aimed to examine the correlation between the striatal monoamine and the STN beta activity induced by STN-DBS. ⋯ STN-DBS could decrease the levels of DOPAC and the STN beta power in a PD model rat. The STN beta power and the levels of striatal monoamine might be differentially correlated between normal and PD model rats.
-
Age-related hearing loss - presbycusis - is the number one communication disorder and most prevalent neurodegenerative condition of our aged population. Although speech understanding in background noise is quite difficult for those with presbycusis, there are currently no biomedical treatments to prevent, delay or reverse this condition. A better understanding of the cochlear mechanisms underlying presbycusis will help lead to future treatments. ⋯ SGN density decreased with age in basal, middle and apical turns, and SGN density of the basal turn declined the most. A positive correlation was observed between SGN density and ABR wave 1amplitude. mRNA and protein expression of GABAAR α1 and AChR β2 decreased with age in SGNs in the old mouse cochlea. mRNA and protein expression of NMDAR NR1 increased with age in SGNs of the old mice. These findings demonstrate that there are functionally-relevant age-related changes of GABAAR, nAChR, NMDAR expression in CBA mouse SGNs reflecting their degeneration, which may be related to functional changes in cochlear synaptic transmission with age, suggesting biological mechanisms for peripheral age-related hearing loss.