Neuroscience
-
Medium spiny neurons (MSNs) constitute 95% of neurons in the dorsal striatum subdivided into direct (striatonigral) and indirect (striatopallidal) pathways. Whereas D1 and D2 receptors and several neuropeptides, including dynorphin and enkephalin, are differentially expressed in these neurons, 5-hydroxytryptamine 6 receptors (5-HT6) are expressed in both pathways. Previous results demonstrate that concurrent 5-HT6 receptor overexpression in MSNs of both pathways in the dorsomedial striatum (DMS) interferes with instrumental learning and that 5-HT6 overexpression in the dorsolateral striatum (DLS) relieves rats from inflexible habitual behaviors. ⋯ We found that increasing 5-HT6 receptor expression in either direct or indirect pathway MSNs of the posterior DMS selectively enhanced or impaired initial acquisition of a discrete instrumental learning task respectively, though all rats were ultimately able to learn the task. In a separate set of experiments, 5-HT6 receptor overexpression in indirect pathway MSNs of the DLS facilitated behavioral flexibility in rats overtrained on a repetitive pressing task using a variable interval schedule of reinforcement, during an omission contingency training session and subsequent probe testing. Together these findings further the notion that 5-HT6 signaling causes balanced activation of opposing MSN pathways by serotonin in sub-regions of the dorsal striatum allowing for more reflective modalities of behavior.
-
Post-weaning social isolation rearing (SI) in rodents elicits various behavioral abnormalities including attention deficit hyperactivity disorder-like behaviors. In order to obtain a better understanding of SI-induced behavioral abnormalities, we herein investigated the effects of SI on social affiliation and conditioned fear memory as well as the neuronal mechanism(s) underlying these effects. Four-week-old male mice were group-housed (GH) or socially isolated for 2-4 weeks before the experiments. ⋯ Neurochemical studies revealed that SI down-regulated the expression levels of the phosphorylated forms of neuro-signaling proteins, calmodulin-dependent kinase II (p-CaMKII), and cyclic AMP-responsive element binding protein (p-CREB), as well as early growth response protein-1 (Egr-1) in the hippocampus. The administration of MPH or tacrine before fear conditioning had no effect on the levels of the phosphorylated forms of the neuro-signaling proteins elucidated following completion of the auditory fear memory test; however, when analyzed 30 min after the administration of the test drugs, tacrine significantly attenuated the SI-induced decrease in p-CaMKII, p-CREB, and Egr-1 in a manner reversible by scopolamine. Our results suggest that SI-induced deficits in social affiliation and conditioned fear memory were mediated by functional alterations to central dopaminergic and cholinergic systems, respectively.
-
Auditory thalamus (medial geniculate body [MGB]) receives ascending inhibitory GABAergic inputs from inferior colliculus (IC) and descending GABAergic projections from the thalamic reticular nucleus (TRN) with both inputs postulated to play a role in shaping temporal responses. Previous studies suggested that enhanced processing of temporally rich stimuli occurs at the level of MGB, with our recent study demonstrating enhanced GABA sensitivity in MGB compared to IC. The present study used sinusoidal amplitude-modulated (SAM) stimuli to generate modulation transfer functions (MTFs), to examine the role of GABAergic inhibition in shaping the response properties of MGB single units in anesthetized rats. ⋯ The ability of GABA circuits to shape responses at higher modulation frequencies is an emergent property of MGB units, not observed at lower levels of the auditory pathway and may reflect activation of MGB NMDA receptors (Rabang and Bartlett, 2011; Rabang et al., 2012). Together, GABAARs exert selective rate control over selected fms, generally without changing the units' response type. These results showed that coding of modulated stimuli at the level of auditory thalamus is at least, in part, strongly controlled by GABA neurotransmission, in delicate balance with glutamatergic neurotransmission.
-
Many studies have investigated exercise therapy in Parkinson's disease (PD) and have shown benefits in improving motor deficits. However, exercise does not slow down the progression of the disease or induce the revival of lost nigrostriatal neurons. To examine the dichotomy of behavioral improvement without the slowing or recovery of dopaminergic cell or terminal loss, we tested exercise therapy in an intervention paradigm where voluntary running wheels were installed half-way through our progressive PD mouse model. ⋯ Even though we did not measure tissue dopamine (DA) concentration, our data suggest that exercise does not alleviate motor deficits by sparing nigrostriatal neurons, but perhaps by stabilizing the extraneuronal neurotransmitters, as evident by a recovery of DA and glutamate transporters. However, suppressing inflammation could be another mechanism of this locomotor recovery. Although exercise will not be a successful treatment alone, it could supplement other pharmaceutical approaches to PD therapy.
-
Using fear-conditioning model, we have used a 3-s auditory conditioned stimulus (CS) as a stressor and observed fear and stress responses during a specific experimental period regardless of the presence or absence of the CS. Because the CS was extremely short compared with the experimental period, we observed responses primarily in the absence of the CS. In contrast, most studies in the literature have analyzed responses in the presence of the CS. ⋯ Finally, the 3-s CS produced more intense freezing and corticosterone secretion than the 20-s CS. On the basis of these characteristics, we conclude that the 3-s auditory CS is a more effective stressor than the 20-s auditory CS. Our findings also suggest that foot shock intensity is an additional determinant in the type of fear response induced by the CS.