Neuroscience
-
Patients with Parkinson's disease (PD) often present with bimanual coordination deficits whose exact origins remain unclear. One aspect of bimanual coordination is inter-limb coupling. This is characterized by the harmonization of movement parameters between limbs. ⋯ However, PD patients did not exhibit spatial inter-limb coupling. Again, this was not altered by medication or stimulation. Collectively, the results suggest that structures independent of the dopaminergic system and basal ganglia may mediate temporal and spatial inter-limb coupling.
-
Investigation of the neural basis of self-generated thought is moving beyond a simple identification with default network activation toward a more comprehensive view recognizing the role of the frontoparietal control network and other areas. A major task ahead is to unravel the functional roles and temporal dynamics of the widely distributed brain regions recruited during self-generated thought. We argue that various other neuroscientific methods - including lesion studies, human intracranial electrophysiology, and manipulation of neurochemistry - have much to contribute to this project. ⋯ Human intracranial electrophysiology illuminates how and where in the brain thought is generated and where this activity subsequently spreads. Finally, measurement and manipulation of neurotransmitter and hormone levels can clarify what kind of neurochemical milieu drives or facilitates self-generated cognition. Integrating evidence from multiple complementary modalities will be a critical step on the way to improving our understanding of the neurobiology of functional and dysfunctional forms of self-generated thought.
-
The autosomal recessive Hereditary Motor and Sensory Neuropathy with Agenesis of the Corpus Callosum (HMSN/ACC) is associated with the dysfunction of the K(+)-Cl(-) cotransporter type 3 (KCC3), which is an electroneutral cotransporter. We previously found that the inhibition of KCC3 cotransporter activity reduces the propagation of action potentials in the peripheral nervous system (PNS). However, the pathogenesis by which KCC3 deficiency impairs peripheral nerve function remains to be examined. ⋯ However, electrophysiological studies using the threshold tracking technique indicated a reduced stimulus-response curve slope with an elevated rheobase, a decreased strength-duration time constant, diminished persistent Na(+) currents, and an outward deviation of threshold electrotonus in KCC3(-/-) nerves compared to wild-type nerves. These functional changes indicate an overall reduction in axonal excitability and suggest an increase in paranodal conductance, which was relevant to the pathology at the paranode. Altogether, our findings highlight the importance of KCC3 in maintaining paranodal integrity and in optimizing the propagation of action potentials along peripheral nerves.
-
Microinjection of morphine into the periaqueductal gray (PAG) produces antinociception. In vitro slice recordings indicate that all PAG neurons are sensitive to morphine either by direct inhibition or indirect disinhibition. We tested the hypothesis that all PAG neurons respond to opioids in vivo by examining the extracellular activity of PAG neurons recorded in lightly anesthetized and awake rats. ⋯ Changes in activity caused by morphine were surprisingly modest (a median increase from 0.7 to 1.3Hz). The small inconsistent effects of morphine are in stark contrast to the large changes produced by morphine on the activity of rostral ventromedial medulla (RVM) neurons or the widespread inhibition and excitation of PAG neurons treated with opioids in in vitro slice experiments. The relatively modest effects of morphine in the present study suggest that morphine produces antinociception by causing small changes in the activity of many PAG neurons.