Neuroscience
-
Numerous intrinsic currents are known to collectively shape neuronal membrane potential dynamics, or neuronal signatures. Although how sets of currents shape specific signatures such as spiking characteristics or oscillations has been studied individually, it is less clear how a neuron's suite of currents jointly shape its entire set of signatures. Biophysical conductance-based models of neurons represent a viable tool to address this important question. ⋯ We illustrate the methodology using two example case rodent pyramidal neurons, from the lateral amygdala and the hippocampus. The methodology also helped reveal that a single-core compartment model could capture multiple neuronal properties. Such biophysical single-compartment models have potential to improve the fidelity of large network models.
-
Resting-state networks (RSNs) refer to the spontaneous brain activity generated under resting conditions, which maintain the dynamic connectivity of functional brain networks for automatic perception or higher order cognitive functions. Here, Granger causal connectivity analysis (GCCA) was used to explore brain RSNs in the music frog (Babina daunchina) during different behavioral activity phases. The results reveal that a causal network in the frog brain can be identified during the resting state which reflects both brain lateralization and sexual dimorphism. ⋯ Thus we propose that this causal network maintains auditory perception during the resting state for unexpected auditory inputs as resting-state networks do in other species. These results are also consistent with the idea that females are more sensitive to auditory stimuli than males during the reproductive season. In addition, these results imply that even when not behaviorally active, the frogs remain vigilant for detecting external stimuli.
-
Brain aging is marked by a decline in cognitive abilities and associated with neurodegenerative disorders. Recent studies have shown, neurogenesis continues into adulthood but is known to be decreasing during advancing age and these changes may contribute to cognitive alterations. Advances, which aim to promote better aging are of paramount importance. ⋯ In contrast, DR shortened telomere lengths only in young animals. Neither age nor DR changed the differentiation patterns of glial cells. Our results suggest that the potential effects of DR could be mediated by telomere regulation and whether these are beneficial or negative remains to be determined.
-
Using an immunohistochemical technique, we mapped the immunoreactive structures containing methionine-enkephalin-Arg(6)-Gly(7)-Leu(8) (Met-8) (a marker for the pro-enkephalin system) in the human diencephalon. Compared with previous studies, we observed a more widespread distribution of Met-8 in the human diencephalon. Met-8-immunoreactive cell bodies and fibers exhibited a more widespread distribution in the hypothalamus than in the thalamus. ⋯ A moderate density was observed in the paraventricular thalamic nucleus, reuniens thalamic nucleus, lateral and medial geniculate nuclei, dorsomedial hypothalamic nucleus, paraventricular hypothalamic nucleus (posterior part) and ventromedial hypothalamic nucleus. The present study is the first to demonstrate the presence of clusters of Met-8-immunoreactive cell bodies in the human thalamus and hypothalamus, the distribution of fibers containing neuropeptides in the hypothalamus and the presence of these fibers in several thalamic nuclei. This neuroanatomical study will serve to elucidate the physiological roles of Met-8 in future studies of the human diencephalon.
-
Protective postural responses, including stepping, to recover equilibrium are critical for fall prevention and are impaired in people with Parkinson's disease (PD) with freezing of gait (FoG). Improving protective postural responses through training may reduce falls in this population. However, motor learning, the basis of neurorehabilitation, is also impaired in people with PD and, in particular, people with PD who experience freezing. ⋯ Significant improvements were retained in both groups. In conclusion, people with PD who freeze exhibited reduced ability to improve protective postural responses in some, but not all, outcome variables. Additional training may be necessary to improve protective postural responses in people with PD who freeze.